References
- O. Edenhofer, K. Seyboth, Intergovernmental panel on climate change (IPCC), (2013) 48-56.
- S.B. Jee, W.K. Kim, K.S. Shin, Shock Tube and Modeling Study of Ignition in Methane. J. Korean Chem. Soc., 43(2) (1999) 156-160.
- M. Klell, H. Eichlseder, M. Sartory, Variable mixtures of hydrogen and methane in the internal combustion engine of a prototype vehicle: regulations, safety and potential. Int. J. Veh. Des., 54(2) (2010) 137-155. https://doi.org/10.1504/IJVD.2010.035356
- J. Alanen, E. Saukko, K. Lehtoranta, T. Murtonen, H. Timonen, R. Hillamo, T. Ronkko, The formation and physical properties of the particle emissions from a natural gas engine, Fuel, 162 (2015) 155-161. https://doi.org/10.1016/j.fuel.2015.09.003
- E. Sendzikiene, A. Rimkus, M. Melaika, V. Makareviciene, Impact of biomethane gas on energy and emission characteristics of a spark ignition engine fuelled with a stoichiometric mixture at various ignition advance angles, Fuel, 162 (2015) 194-201. https://doi.org/10.1016/j.fuel.2015.09.019
- J. de Vries, E.L. Petersen, Autoignition of methane-based fuel blends under gas turbine conditions, Proc. Combust. Inst., 31 (2007) 3163-3171. https://doi.org/10.1016/j.proci.2006.07.206
- E.L. Petersen, J.M. Hall, S.D. Smith, J. de Vries, A.R. Amadio, M.W. Crofton, Ignition of lean methane-based fuel blends at gas turbine pressures, J. Eng. Gas Turbines Power, 129 (2007) 937-944. https://doi.org/10.1115/1.2720543
- F. Catapano, S. Di Iorio, A. Magno, P. Sementa, B.M. Vaglieco, A comprehensive analysis of the effect of ethanol, methane and methane-hydrogen blend on the combustion process in a PFI (port fuel injection) engine, Energy, 88 (2015) 101-110. https://doi.org/10.1016/j.energy.2015.02.051
- K. Nanthagopal, R. Subbarao, T. Elango, P. Baskar, K. Annamalai, Hydrogen enriched compressed natural gas (HCNG): a futuristic fuel for internal combustion engines, Therm. Sci., 15 (2011) 1145-1154. https://doi.org/10.2298/TSCI100730044N
- G.B. Skinner, R.A. Ruehrwein, Shock tube studies on the pyrolysis and oxidation of methane, J. Phys. Chem., 63 (1959) 1736-1742. https://doi.org/10.1021/j150580a040
- A.B. Mansfield, M.S. Wooldridge, H. Di, X. He, Low-temperature ignition behavior of iso-octane, Fuel, 139 (2015) 79-86. https://doi.org/10.1016/j.fuel.2014.08.019
- J. Zador, C.A. Taatjes, R.X. Fernandes, Kinetics of elementary reactions in low-temperature autoignition chemistry, prog. Energy Combust. Sci., 37 (2011) 371-421. https://doi.org/10.1016/j.pecs.2010.06.006
- C.K. Westbrook, F.L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Prog. Energy Combust. Sci., 10 (1984) 1-57. https://doi.org/10.1016/0360-1285(84)90118-7
- A. Lifshitz, K. Scheller, A. Burcat, G.B. Skinner, Shock-tube investigation of ignition in methane-oxygen-argon mixtures, Combust. Flame., 16 (1971) 311-321. https://doi.org/10.1016/S0010-2180(71)80102-5
- D.F. Davidson, R.K. Hanson, Interpreting shock tube ignition data, Int. J. Chem. Kinet., 36 (2004) 510-523. https://doi.org/10.1002/kin.20024
- D. Healy, H.J. Curran, J.M. Simmie, D.M. Kalitan, C.M. Zinner, A.B. Barrett, G. Bourque, Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures, Combust. Flame., 155(3) (2008) 441-448. https://doi.org/10.1016/j.combustflame.2008.07.003
- H.S. Glick, W. Squire, A. Hertzberg, A new shock tube technique for the study of high temperature gas phase reactions, Symp. (Int.) Combust., 5 (1955) 393-402. https://doi.org/10.1016/S0082-0784(55)80052-5
- D. Healy, D.M. Kalitan, C.J. Aul, E.L. Petersen, G. Bourque, H.J. Curran, Oxidation of C1-C5 alkane quinternary natural gas mixtures at high pressures, Energy Fuels, 24 (2010) 1521-1528. https://doi.org/10.1021/ef9011005
- E.L. Petersen, M. Rohrig, D.F. Davidson, R.K. Hanson, C.T. Bowman, High-pressure methane oxidation behind reflected shock waves, Proc. Combust. Inst., 26 (1996) 799-806. https://doi.org/10.1016/S0082-0784(96)80289-X
- L.J. Spadaccini, M.B. Colket, Ignition delay characteristics of methane fuels, prog. Energy Combust. Sci., 20 (1994) 431-460. https://doi.org/10.1016/0360-1285(94)90011-6
- J.M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., 29 (2003) 599-634. https://doi.org/10.1016/S0360-1285(03)00060-1
- H.El. Merhubi, A. Keromnes, G. Catalano, B. Lefort, L.L. Moyne, A high pressure experimental and numerical study of methane ignition, Fuel, 177 (2016) 164-172. https://doi.org/10.1016/j.fuel.2016.03.016
- Y. Zhang, Z. Huang, L. Wei, J. Zhang, C.K. Law, Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures, Combust. Flame., 159 (2012) 918-931. https://doi.org/10.1016/j.combustflame.2011.09.010
- C. Tang, L. Wei, J. Zhang, X. Man, Z. Huang, Shock tube measurements and kinetic investigation on the ignition delay times of methane/dimethyl ether mixtures, Energy Fuels, 26(11) (2012) 6720-6728. https://doi.org/10.1021/ef301339m
- R.K. Hanson, Shock Tube Techniques, Lecture Note 11, Combution Energy Frontier Research Center of Princeton University, (2013) 1-38.
- Y.G. Wang, C.J. Kim, C.H. Sohn, I.S. Jeung, A Numerical Study on Pressure Variation in a Shock Tube by Changing the Diameter Ratio of Low-Pressure (Driven) to High-Pressure (Driver) Part, J. Korean Soc. Combust., 21(4) (2016) 16-22. https://doi.org/10.15231/JKSC.2016.21.4.016