DOI QR코드

DOI QR Code

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model

NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구

  • Received : 2016.08.07
  • Accepted : 2017.01.23
  • Published : 2017.02.01

Abstract

A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

본 연구에서는 NREL 5 MW 해상풍력터빈 모형의 후류 유동장 분석을 위해 1/86 축소모형을 사용한 실험적 연구를 수행하였다. 정격출력 속도 11.4 m/s와 회전수 1,045 rpm 조건에서 열선풍속계를 사용하여 반경의 6배까지 후류에서 속도 결핍 및 난류도 변화를 측정하는 풍동시험을 수행하였다. 그 결과 풍력터빈의 후류에서의 속도결핍은 횡방향과 수직 방향으로는 반경의 2배 이내에서 회복됨을 볼 수 있었으며, 끝단 와류에 의한 영향은 반경의 5배 이후에는 나타나지 않음을 볼 수 있었다. 또한, 후류의 난류도는 블레이드 끝단 부근에서 크게 나타나며 길이방향으로 반경 거리까지는 급격한 감소가 일어나지만 이 이후부터 반경의 6배까지 유지되었다.

Keywords

References

  1. Sanderse, B., "Aerodynamics of Wind Farm Wakes," ECN-E-09-016, 2009.
  2. Barthelmie, R. J. et al., "Flow and Wakes in Large Wind Farms: Final Report for UpWind WP8," Riso-R-1765(EN), 2011.
  3. Vermeer, L. J., Sorensen, J. N., and Crespo, A., "Wind Turbine Wake Aerodynamics," Progress in Aerospace Sciences, Vol. 39, 2003.
  4. Ko, K.-N., Park, M.-H., and Huh, J.-C., "An Analysis of Wake Effect in a Wind Farm," Journal of the Korean Society for Power System Engineering, Vol. 17, No. 2, 2013.4.
  5. Kim, J., Kang, S.-H., and Ryu, K.-W, "Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 5, 2016, pp. 391-398. https://doi.org/10.5139/JKSAS.2016.44.5.391
  6. Larsen, T. J., Madsen, H. A., Larsen, G. C., and Hansen, K. S.., "Validation of the Dynamic Wake Meander Model for Loads and Power Production in the Egmond aan Zee Wind Farm," Wind Energy, Vol. 16, 2013, pp. 605-624. https://doi.org/10.1002/we.1563
  7. KAFA Subsonic Wind Tunnel, http://www.afa.ac.kr/index_frame_kk.html.
  8. Operation Manual, "AEROTECH Probe Traverse System for KAFA," AEROTECH Ref. 9705
  9. Jonkman, J., Butterfield, S., Musial, W., and Scott, G., "Definition of a 5-MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Laboratory,"NREL TP-500-38060, 2009.
  10. DANTEC Dynamics, Probe for Hot-wire Anemometry, 103-105-07.
  11. Ryu, K.-W, Yoon, S.-J., Lee, C.-S. and Choy, S.-O., "Aerodynamic Performance for Horozontal Axis Wind Turbine Model using Subsonic Wind Tunnel," J. of The Korean Society for Aeronautical & Space Sciences, Vol. 35, No. 11, 2007.
  12. Neff, D. E., Meroney, R. N., "Mean Wind and Turbulence Characteristics due to Induction Effects near Wind Turbine Rotors," J. of Wind Engineering and Industrial Aerodynamics, Vol. 69, No. 71, 1997