DOI QR코드

DOI QR Code

γ-ReƟ 천이 모델을 사용한 KARI-11-180 익형의 천이 유동해석

Numerical simulation study on transitional flow over the KARI-11-180 airfoil using γ-ReƟ transition model

  • Sa, Jeong Hwan (Department of Computational Science & Engineering, Korea Instituteof Science and Technology Information(KISTI)) ;
  • Kim, Kiro (Aerospace Information Engineering, Konkuk University) ;
  • Cho, Kum Won (Supercomputing R & D Center, Korea Institute of Science and Technology Information(KISTI)) ;
  • Park, Soo Hyung (Aerospace Information Engineering, Konkuk University)
  • 투고 : 2016.11.02
  • 심사 : 2016.12.20
  • 발행 : 2017.03.01

초록

본 연구에서는 KFLOW에서 사용하고 있는 ${\gamma}-Re_{\theta}$ 천이 모델을 사용하여 KARI-11-180 익형의 공력특성을 수치적으로 예측하고 그 결과를 실험 결과 및 XFOIL과 MSES의 결과와 비교하였다. 완전 난류모델은 천이모델에 비해 마찰항력을 크게 예측하기 때문에 전체적으로 높은 항력을 예측하는 등 천이모델과 완전 난류모델간의 차이를 확인하였다. KFLOW의 ${\gamma}-Re_{\theta}$ 모델을 사용한 결과는 실험을 통해 확인된 천이 유동 실험 결과의 특성을 잘 예측하고 있었으며 XFoil이나 MSES의 결과와도 잘 일치하고 있음을 확인하였다. 본 연구를 통해 drag-bucket현상이 익형 표면의 천이점의 급격한 변화로 인해 발생함을 확인하였다.

In this study, numerical simulations were performed using the ${\gamma}-Re_{\theta}$ transition model of KFLOW for the transitional flow over the KARI-11-180 airfoil. Numerical results of KFLOW were compared with experimental data and two other numerical results of XFoil and MSES. Fully turbulence model was predicted high skin friction drag than transition model because fully turbulence model could not solve the transitional flow. Numerical predictions using the ${\gamma}-Re_{\theta}$ model of KFLOW show a good agreement with experimental data and other numerical results. Present numerical results were confirmed the state of drag bucket due to dramatic changing of the transition location on the airfoil surface.

키워드

참고문헌

  1. Granville, P. S., "The Calculation of the Viscous Drag of Bodies of Revolution," AGARD Rep. 849, David W. Taylor Model Basin, 1953.
  2. Arnal, D., "Boundary Layer Transition: Prediction, Application to Drag Reduction," AGARD-R-786, 1992.
  3. Smith, A. M. O., and Gamberoni, N., "Transition, Pressure Gradient and Stability Theory," Douglas Aircraft Co., Report. ES 26388, 1956.
  4. van Ingen, J., "A Suggested Semi-Empirical Method for the Calculation of the Boundary-Layer Region," Tech. rep., Delft, Holland, Rept. No. VTH71, VTH74, 1956.
  5. Drela, M., and Giles, M. B., "Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils," AIAA, Vol. 25, No. 10, 1986, pp. 1347-1355.
  6. Drela, M., "XFOIL: An Analysis and Design for Low Reynolds Number Airfoils," Low Reynolds Number Aerodynamics, Springer-Verlag, 1989.
  7. HerBert, T., "Boundary-Layer Transition-Analysis and Prediction Revisited," AIAA 91-0734, 1991.
  8. Bertolotti, F. P., "Linear and Nonlinear Stability of Boundary Layer with Streamwise Varying Properties," Ph.D Thesis, Ohio State University, 1991.
  9. Menter, F. R., Langtry, R. B., and Volker, S., "Transition Modeling for General Purpose CFD Codes," Flow Turbulence Combust, Vol. 77, 2006, pp. 277-303. https://doi.org/10.1007/s10494-006-9047-1
  10. Langtry, R. B., "A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD codes," Ph.D. Thesis, Univ. of Stuttgart, Stuttgart, Germany, 2006.
  11. Langtry, R. B., and Menter, F. R., "Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes," AIAA Journal, Vol. 47, No. 12, 2009, pp. 2894-2096. https://doi.org/10.2514/1.42362
  12. Lee, Y. K., Kim, C. W., "Prediction of aerodynamic characteristics for wind turbine airfoil with CFD," Journal of wind energy, Vol. 2, No. 2, 2011, pp. 43-47
  13. Park, S. H., and Kwon, J. H., "Implementation of $k-{\omega}$ Turbulence Models in an Implicit Multigrid Method," AIAA Journal, Vol. 42, No. 7, 2004, pp. 1348-1357. https://doi.org/10.2514/1.2461
  14. Park, S. H., Lee, J. E., and Kwon, J. H., "Preconditioned HLLE Method for Flows at All Mach Numbers," AIAA Journal, Vol. 44, No. 11, 2006, pp.2645-2653. https://doi.org/10.2514/1.12176
  15. Sa, J. H., Park, S. H., Kim, C. J., and Park, J. K., "Low-Reynolds number flow computation for eppler 387 wing using hybrid DES/transition model," Journal of Mechanical Science and Technology, Vol. 29, No. 5, 2015, pp. 1837-1847. https://doi.org/10.1007/s12206-015-0404-7
  16. Kim, C. W., Cho, T. H., "Wind tunnel test of the 2D airfoil turbine for the MW size wind turbine," Journal of wind energy, Vol. 2, No. 2, 2011, pp. 38-42
  17. Drela, M., "XFOIL 6.94 User Guide," MIT Department of Aeronautics and Astronautics, 2001.
  18. Drela, M., "A User's Guide to MSES 3.05," MIT Department of Aeronautics and Astronautics, 2007.
  19. Pulliam, T. H., "Solution Methods In Computational Fluid Dynamics," Technical report, NASA Ames Research Center, 1992.
  20. Sa, J. H., Jeon, S. E., Park, S. H., "A Comparative study on prediction capability of airfoil flows using a transition transport model," Journal of Computational Fluids Engineering, Vol. 19, No. 2, 2014, pp.8-16. https://doi.org/10.6112/kscfe.2014.19.2.008