DOI QR코드

DOI QR Code

The antimicrobial activity of Daehwanggo against Methicillin-resistant Staphylococcus aureus

대황고(大黃膏)의 메티실린 내성 황색 포도상구균에 대한 항균활성

  • Lee, Sun-Ae (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Kong, Ryong (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Kang, Ok-Hua (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Seo, Yun-Soo (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Zhou, Tian (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Kim, Sang-A (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Song, Ok-Hee (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Kim, Min-Chul (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Han, Hyoung-Sun (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Choi, Ji-Na (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Lee, Young-Seob (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kwon, Dong-Yeul (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University)
  • 이순애 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 공룡 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 강옥화 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 서윤수 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 주전 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 김상아 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 송옥희 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 김민철 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 한형선 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 최지나 (원광대학교 약학대학 한약학과, 원광한약연구소) ;
  • 이영섭 (농촌진흥청 국립원예특작과학원 인삼특작부 인삼특작이용팀) ;
  • 권동렬 (원광대학교 약학대학 한약학과, 원광한약연구소)
  • Received : 2017.01.20
  • Accepted : 2017.03.15
  • Published : 2017.03.30

Abstract

Objectives : Infectious diseases by Methicillin-Resistant Staphylococcus aureus (MRSA) are a growing problem worldwide. Characteristic of MRSA is endlessly mutation to resist antibiotics. Daehwanggo (DHG) is one of the oriental medicine prescriptions contained in Principles and Practice of Eastern Medicine. Daehwanggo was mainly used for external preparation from old times. The purpose of this study is to confirm possibility as supplementary drug of DHG about antibiotics through observation of synergy effect between DHG and commercial antibiotics and to observe restriction on growth of MRSA on any pathway through observation of mechanism. Methods : The minimum inhibitory concentration (MIC) of DHG against MRSA is $500{\sim}2000{\mu}g/m{\ell}$ by broth dilution method. In the checkerboard method, the combinations of DHG with antibiotics has partial synergistic effect or synergy effect and DHG markedly reduced the MICs of the antibiotics oxacillin (OX), gentamicin (GT) against MRSA. In the inhibition of resistance mechanism of DHG against MRSA, the expression of resistance gene and protein about ${\beta}-lactam$ antibiotic was reduced. Also, we observed the effect of DHG about cell membrane permeability against MRSA, and confirmed that DHG suppressed growth of strains by increasing cell membrane permeability. Results : Basis on the result, we speculate that DHG increase antibacterial activity of antibiotics against MRSA by changing the structure of cell wall of MRSA. Conclusions : These data suggest that Daehwanggo possesses possibility as supplementary drug about antibiotics against MRSA.

Keywords

References

  1. Foster TJ. The Staphylococcus aureus "superbug". J Clin Invest. 2004 ;114(12):1693-1696. https://doi.org/10.1172/JCI200423825
  2. Meziane-Cherif D, Saul FA, Moubareck C, Weber P, Haouz A, Courvalin P, Perichon B. Molecular basis of vancomycin dependence in VanA-type Staphylococcus aureus VRSA-9. J Bacteriol. 2010;192(20):5465-5471. https://doi.org/10.1128/JB.00613-10
  3. Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M. Reduced content of lysylphosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(12):4800-4807. https://doi.org/10.1128/AAC.48.12.4800-4807.2004
  4. Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014;66(8):572-577. https://doi.org/10.1002/iub.1289
  5. Bhattacharya PK. Emergence of antibiotic-resistant bacterial strains, Methicillin-resistant Staphylococcus aureus, extended spectrum beta lactamases, and multi-drug resistance is a problem similar to global warming. Rev Soc Bras Med Trop. 2014;47(6):815-816. https://doi.org/10.1590/0037-8682-0139-2014
  6. Najar-Peerayeh S, Jazayeri Moghadas A, Behmanesh M. Antibiotic Susceptibility and mecA Frequency in Staphylococcus epidermidis, Isolated From Intensive Care Unit Patients. Jundishapur J Microbiol. 2014;7(8): e11188.
  7. Aedo S, Tomasz A. Role of the Stringent Stress Response in the Antibiotic Resistance Phenotype of Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2016;60(4):2311-2317. https://doi.org/10.1128/AAC.02697-15
  8. Pence MA, Haste NM, Meharena HS, Olson J, Gallo RL, Nizet V, Kristian SA. Beta-Lactamase Repressor BlaI Modulates Staphylococcus aureus Cathelicidin Antimicrobial Peptide Resistance and Virulence. PLoS One. 2015;10(8):e0136605. https://doi.org/10.1371/journal.pone.0136605
  9. Gregory PD, Lewis RA, Curnock SP, Dyke KG. Studies of the repressor (BlaI) of beta-lactamase synthesis in Staphylococcus aureus. Mol Microbiol. 1997;24(5) :1025-1037. https://doi.org/10.1046/j.1365-2958.1997.4051770.x
  10. Khodabakhsh P, Shafaroodi H, Asgarpanah J. Analgesic and anti-inflammatory activities of Citrus aurantium L. blossoms essential oil (neroli): involvement of the nitric oxide/cyclic-guanosine monophosphate pathway. J Nat Med. 2015;69(3) :324-331. https://doi.org/10.1007/s11418-015-0896-6
  11. Azanchi T, Shafaroodi H, Asgarpanah J. Anticonvulsant activity of Citrus aurantium blossom essential oil (neroli): involvment of the GABAergic system. Nat Prod Commun. 2014;9(11):1615-1618.
  12. Lu D, Xia Y, Tong B, Zhang C, Pan R, Xu H, Yang X, Dai Y. In vitro anti-angiogenesis effects and active constituents of the saponin fraction from Gleditsia sinensis. Integr Cancer Ther. 2014;13(5):446-457. https://doi.org/10.1177/1534735412442377
  13. Zhou L, Li D, Jiang W, Qin Z, Zhao S, Qiu M, Wu J. Two ellagic acid glycosides from Gleditsia sinensis Lam. with antifungal activity on Magnaporthe grisea. Nat Prod Res. 2007;21(4):303-309. https://doi.org/10.1080/14786410701192702
  14. Ahn YJ, Lee CO, Kweon JH, Ahn JW, Park JH. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J Appl Microbiol. 1998;84(3):439-443. https://doi.org/10.1046/j.1365-2672.1998.00363.x
  15. An RB, Oh H, Kim YC. Phenolic constituents of galla Rhois with hepatoprotective effects on tacrineand nitrofurantoin-induced cytotoxicity in Hep G2 cells. Biol Pharm Bull. 2005;28(11):2155-2157. https://doi.org/10.1248/bpb.28.2155
  16. Lee JJ, Cho WK, Kwon H, Gu M, Ma JY. Galla rhois exerts its antiplatelet effect by suppressing ERK1/2 and $PLC{\beta}$ phosphorylation. Food Chem Toxicol. 2014;69:94-101. https://doi.org/10.1016/j.fct.2014.03.032
  17. Veljic M, Tarbuk M, Marin PD, Ciric A, Sokovic M, Marin M. Antimicrobial activity of methanol extracts of mosses from Serbia. Pharm Biol. 2008;46:871-875. https://doi.org/10.1080/13880200802367502
  18. Bala M, Ray K, Gupta SM. Comparison of disc diffusion results with minimum inhibitory concentration(MIC) values for antimicrobial susceptibility testing of Neisseria gonorrhoeae. Indian J. Med. Res. 2005;122:48-51.
  19. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standards. CLSI document M7-A5. Wayne, PA: CLSI, 2000.
  20. Mun SH, Kang OH, Joung DK, Kim SB, Seo YS, Choi JG, Lee YS, Cha SW, Ahn YS, Han SH, Kwon DY. Combination Therapy of Sophoraflavanone B against MRSA: In Vitro Synergy Testing. Foodborne Pathog Dis. 2014;11(3):234-239. https://doi.org/10.1089/fpd.2013.1627
  21. Mun SH, Kang OH, Joung DK, Kim SB, Choi JG, Shin DW, Kwon DY. In vitro anti-MRSA activity of carvone with gentamicin. Exp Ther Med. 2014;7(4): 891-896. https://doi.org/10.3892/etm.2014.1498
  22. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT, Kwon DY. Synergistic antibacterial effect of curcumin against Methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8-9):714-718. https://doi.org/10.1016/j.phymed.2013.02.006
  23. Mun SH, Lee YS, Han SH, Lee SW, Cha SW, Kim SB, Seo YS, Kong R, Kang DH, Shin DW, Kang OH, Kwon DY. In vitro Potential Effect of Morin in the Combination with $\beta$-Lactam Antibiotics Against Methicillin-Resistant Staphylococcus aureus. Foodborne Pathog Dis. 2015;12(6):545-550. https://doi.org/10.1089/fpd.2014.1923
  24. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Reversal of ampicillin resistance in MRSA via inhibition of penicillin-binding protein 2a by Acalypha wilkesiana. Biomed Res Int. 2014;2014:965348.
  25. Otto CC, Cunningham TM, Hansen MR and Haydel SE. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and Methicillin-resistant Staphylococcus aureus. Ann. Clin. Microbiol. Antimicrob, 2010;9:26. https://doi.org/10.1186/1476-0711-9-26
  26. Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLoS One. 2016;11(2):e0149541. https://doi.org/10.1371/journal.pone.0149541
  27. Al-Habib A, Al-Saleh E, Safer AM and Afzal M. Bactericidal effect of grape seed extract on Methicillin-resistant Staphylococcus aureus(MRSA). J. Toxicol. Sci, 2010;35:357-364. https://doi.org/10.2131/jts.35.357
  28. Kim KJ, Yu HH, Cha JD, Seo SJ, Choi NY, You YO. Antibacterial activity of Curcuma longa L. against Methicillin-resistant Staphylococcus aureus. Phytother Res. 2005;19(7):599-604. https://doi.org/10.1002/ptr.1660
  29. Saad A, Fadli M, Bouaziz M, Benharref A, Mezrioui NE, Hassani L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine. 2010;17(13):1057-1060. https://doi.org/10.1016/j.phymed.2010.03.020
  30. Ettefagh KA, Burns JT, Junio HA, Kaatz GW, Cech NB. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med. 2011;77(8):835-840. https://doi.org/10.1055/s-0030-1250606
  31. Yoon JI, Bajpai VK, Kang SC. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food Chem Toxicol. 2011;49(1):109-114. https://doi.org/10.1016/j.fct.2010.10.004