Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095. https://doi.org/10.1016/0001-6160(79)90196-2
- M. Benes, V. Chalupecky and K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Applied Numerical Mathematics, 51 (2004), 187-205. https://doi.org/10.1016/j.apnum.2004.05.001
- J.A. Dobrosotskaya and A.L. Bertozzi, A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Transactions on Image Processing, 17 (2008), 657-663. https://doi.org/10.1109/TIP.2008.919367
- L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature, Communications on Pure and Applied Mathematics, 45 (1992), 1097-1123. https://doi.org/10.1002/cpa.3160450903
- X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numerische Mathematik, 94 (2003), 33-65. https://doi.org/10.1007/s00211-002-0413-1
- M. Katsoulakis, G.T. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, Journal of Geometric Analysis, 5 (1995), 255-279. https://doi.org/10.1007/BF02921677
- R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Journal of Physics D, 63 (1993), 410-423. https://doi.org/10.1016/0167-2789(93)90120-P
- W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Phase-field simulation of solidification, Annual Review of Materials Research, 32 (2002), 163-194. https://doi.org/10.1146/annurev.matsci.32.101901.155803
- A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical Review E, 57 (1998), 4323-4349. https://doi.org/10.1103/PhysRevE.57.4323
- D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, http://www.math.utah.edu/-eyre/research/methods/stable.ps.
- S. Zhai, X. Feng and Y. He, Numerical simulation of the three dimensional Allen-Cahn equation by the highorder compact ADI method, Computer Physics Communications, 185 (2014), 2449-2455. https://doi.org/10.1016/j.cpc.2014.05.017
- X. Feng, H. Song, T. Tang and J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Problems and Imaging, 7 (2013), 679-695. https://doi.org/10.3934/ipi.2013.7.679
- A. Christlieb, J. Jones, K. Promislow, B. Wetton and M. Willoughby, High accuracy solutions to energy gradient flows from material science models, Journal of Computational Physics, 257 (2014), 193-215. https://doi.org/10.1016/j.jcp.2013.09.049
- A.-K. Kassam and L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233. https://doi.org/10.1137/S1064827502410633
- H.G. Lee and J.-Y. Lee, A semi-analytical Fourier spectral method for the Allen-Cahn equation, Computers & Mathematics with Applications, 68 (2014), 174-184. https://doi.org/10.1016/j.camwa.2014.05.015
- Y. Li, H.G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Computers & Mathematics with Applications, 60 (2010), 1591-1606. https://doi.org/10.1016/j.camwa.2010.06.041
- S. Blanes and F. Casas, On the necessity of negative coefficients for operator splitting schemes of order higher than two, Applied Numerical Mathematics, 54 (2005), 23-37. https://doi.org/10.1016/j.apnum.2004.10.005
- D. Goldman and T.J. Kaper, Nth-order operator splitting schemes and nonreversible systems, SIAM Journal on Numerical Analysis, 33 (1996), 349-367. https://doi.org/10.1137/0733018
- H.G. Lee and J. Kim, An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations, Computer Physics Communications, 183 (2012), 2107-2115. https://doi.org/10.1016/j.cpc.2012.05.013
- H.G. Lee, J. Shin and J.-Y. Lee, First and second order operator splitting methods for the phase field crystal equation, Journal of Computational Physics, 299 (2015), 82-91. https://doi.org/10.1016/j.jcp.2015.06.038
- H.G. Lee and J.-Y. Lee, A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms, Physica A, 432 (2015), 24-34. https://doi.org/10.1016/j.physa.2015.03.012
- G.M. Muslu and H.A. Erbay, Higher-order split-step Fourier schemes for the generalized nonlinear Schrodinger equation, Mathematics and Computers in Simulation, 67 (2005), 581-595. https://doi.org/10.1016/j.matcom.2004.08.002
- G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5 (1968), 506-517. https://doi.org/10.1137/0705041
- R. McLachlan, Symplectic integration of Hamiltonian wave equations, Numerische Mathematik, 66 (1994), 465-492.
- N. Ahmed, T. Natarajan and K.R. Rao, Discrete cosine transform, IEEE Transactions on Computers, C-23 (1974), 90-93. https://doi.org/10.1109/T-C.1974.223784
- P.C. Fife, Models for phase separation and their mathematics, Electronic Journal of Differential Equations, 2000 (2000), 1-26.