References
- A. S. V. Ravi Kanth and K. Aruna, Differential transform method for solving linear and non-linear systems of partial differential equations, Physics Letters, A372 (2008) 6896-6898.
- A. S. V. Ravi Kanth and K. Aruna, Differential transform method for solving the linear and nonlinear Klein-Gordon equation, Computer Physics Communiction, (2009) 708-711.
- H. Trikia and A. -M.Wazwaz, Dark Solitons for a Generalized Korteweg-de Vries Equation with Time-Dependent Coefficients, Z. Naturforsch, 66a (2011) 199-204. https://doi.org/10.5560/ZNA.2011.66a0199
- Q. Wang, Y. Chen and HQ. Zhang, A new Jacobi elliptic function rational ex- pansion method and its application to (1+1)-dimensional dispersive long wave equation, Chaos Solitons Fract., 23 (2005) 477-483. https://doi.org/10.1016/j.chaos.2004.04.029
- H. A. Abdusalam and E. S. Fahmy, Traveling wave solutions for nonlinear wave equation with dissipation and nonlinear transport term through factorizations, Int. J. Comput. Meth., bf 4(4) (2007) 645-651. https://doi.org/10.1142/S0219876207001321
- W. Mal iet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Physica Scripta, 54 (1996) 563-568. https://doi.org/10.1088/0031-8949/54/6/003
- E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations, Computer Physics Com- munications, 98 (1996) 288-300. https://doi.org/10.1016/0010-4655(96)00104-X
- A. Biswas, Solitary wave solution for the generalized Kawahara equation, Applied Mathematics Letters, 22 (2009) 208-210. https://doi.org/10.1016/j.aml.2008.03.011
- M. L. Wang, X. Li and J. Zhang, The (G'/G)-expansion method and evolution equation in mathematical physics, Phys. Lett. A, 372 (2008) 417-421. https://doi.org/10.1016/j.physleta.2007.07.051
- A. Biswas, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., 22 (2009) 208-210. https://doi.org/10.1016/j.aml.2008.03.011
- H. Kim and R. Sakthivel, Travelling wave solutions for time-delayed nonlinear evolution equations, Applied Mathematics Letters, 23 (2010) 527-532. https://doi.org/10.1016/j.aml.2010.01.005
- K. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990) 287-291. https://doi.org/10.1016/0375-9601(90)90449-X
- N. A. Kudryashov, Simplest equation method to look for exact solutions of non- linear differential equations, Chaos, Solitons & Fractals, 24 (2005) 1217-1231. https://doi.org/10.1016/j.chaos.2004.09.109
- N. K. Vitanov, Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 2050-2060. https://doi.org/10.1016/j.cnsns.2009.08.011
- H. Kim, J. -H. Bae and R. Sakthivel, Exact Travelling Wave Solutions of two Important Nonlinear Partial Differential Equations, Z. Naturforsch, 69a (2014) 155-162.
- J. H. Choi, H. Kim and R. Sakthivel, Exact solution of the wick-type stochastic fractional coupled KdV equations, J. Math. Chem., 52 (2014) 2482-2493. https://doi.org/10.1007/s10910-014-0406-1
- M. M. Kabir, A. E. Y. K. Aghdam and A. Y. Koma, Modied Kudryashov method for nding exact solitary wave solutions of higher order nonlinear equations, Math. Methods Appl. Sci., 34(2) (2011) 213-219. https://doi.org/10.1002/mma.1349
- S. M. Ege and E. Misirli, The modified Kudryashov method for solving some fractional-order nonlinear equations, Adv. Differ. Eq., 135(1) (2014).
- N. A. Kudryashov and A. S. Zakharchenko, Plainleve analysis and exact solu-tions of a predator-prey system with diffusion, Math. Metho. Appl. Sci., DOI: 10.1002/mma.3156 (2014).
- N. A. Kudryashov, Painleve analysis and exact solutions of the fourth-order equa-tion for description of nonlinear waves, Commun. Nonlinear Sci. Numer. Simu- lat., 28 (2015) 1-9. https://doi.org/10.1016/j.cnsns.2015.03.021
- A. M. Abourabia, K. M. Hassan and E. S. Selim, Painleve test and some exact solutions for (2+1)-dimensional modied Korteweg-de Vries-Bergers equation, Int. J. Comput. Meth., 10(3) (2013) 1250058. https://doi.org/10.1142/S0219876212500582
- Y. Liu, F. Duan and C. Hu, Painleve property and exact solutions to a (2+1)-dimensional KdV-mKdV equation, J. of Appl. Math. and Phys., 3(6) (2015) 36083.
- P. J. Morrison, J. D. Meiss and J. R. Cary, Scattering of Regularized-Long-Wave Solitary Waves, Physica D. Nonlinear Phenomena, (1984) 324-336.
- A. Bekir and E. Yusufoglu, Numerical simulation of equal-width wave equation, Computers and Mathematics with Applications, 54 (2007) 1147-1153. https://doi.org/10.1016/j.camwa.2006.12.080
- K. R. Raslan, Exact Solitary Wave Solutions of Equal WidthWave and Related Equations Using a Direct Algebraic Method, International Journal of Nonlinear Science, 6(3) (2008) 246-254.
- A. Maccari, The Kadomtsev.Petviashvili Equation as a Source of Integrable Model Equations, J. Math. Phys., 37 (1996) 6207-6212. https://doi.org/10.1063/1.531773
- S. Zhang, Exp-function method for solving Maccari's system, Phys. Lett. A, 371 (2007) 65-71. https://doi.org/10.1016/j.physleta.2007.05.091