DOI QR코드

DOI QR Code

SOME EXPLICIT SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo (Department of Mathematics, Sungkyunkwan University) ;
  • Lee, Youho (Department of Internet Information, Daegu Haany University)
  • Received : 2016.04.08
  • Accepted : 2017.02.03
  • Published : 2017.03.25

Abstract

In this paper, we construct exact traveling wave solutions of various kind of partial differential equations arising in mathematical science by the system technique. Further, the $Painlev{\acute{e}}$ test is employed to investigate the integrability of the considered equations. In particular, we describe the behaviors of the obtained solutions under certain constraints.

Keywords

References

  1. A. S. V. Ravi Kanth and K. Aruna, Differential transform method for solving linear and non-linear systems of partial differential equations, Physics Letters, A372 (2008) 6896-6898.
  2. A. S. V. Ravi Kanth and K. Aruna, Differential transform method for solving the linear and nonlinear Klein-Gordon equation, Computer Physics Communiction, (2009) 708-711.
  3. H. Trikia and A. -M.Wazwaz, Dark Solitons for a Generalized Korteweg-de Vries Equation with Time-Dependent Coefficients, Z. Naturforsch, 66a (2011) 199-204. https://doi.org/10.5560/ZNA.2011.66a0199
  4. Q. Wang, Y. Chen and HQ. Zhang, A new Jacobi elliptic function rational ex- pansion method and its application to (1+1)-dimensional dispersive long wave equation, Chaos Solitons Fract., 23 (2005) 477-483. https://doi.org/10.1016/j.chaos.2004.04.029
  5. H. A. Abdusalam and E. S. Fahmy, Traveling wave solutions for nonlinear wave equation with dissipation and nonlinear transport term through factorizations, Int. J. Comput. Meth., bf 4(4) (2007) 645-651. https://doi.org/10.1142/S0219876207001321
  6. W. Mal iet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Physica Scripta, 54 (1996) 563-568. https://doi.org/10.1088/0031-8949/54/6/003
  7. E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations, Computer Physics Com- munications, 98 (1996) 288-300. https://doi.org/10.1016/0010-4655(96)00104-X
  8. A. Biswas, Solitary wave solution for the generalized Kawahara equation, Applied Mathematics Letters, 22 (2009) 208-210. https://doi.org/10.1016/j.aml.2008.03.011
  9. M. L. Wang, X. Li and J. Zhang, The (G'/G)-expansion method and evolution equation in mathematical physics, Phys. Lett. A, 372 (2008) 417-421. https://doi.org/10.1016/j.physleta.2007.07.051
  10. A. Biswas, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., 22 (2009) 208-210. https://doi.org/10.1016/j.aml.2008.03.011
  11. H. Kim and R. Sakthivel, Travelling wave solutions for time-delayed nonlinear evolution equations, Applied Mathematics Letters, 23 (2010) 527-532. https://doi.org/10.1016/j.aml.2010.01.005
  12. K. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990) 287-291. https://doi.org/10.1016/0375-9601(90)90449-X
  13. N. A. Kudryashov, Simplest equation method to look for exact solutions of non- linear differential equations, Chaos, Solitons & Fractals, 24 (2005) 1217-1231. https://doi.org/10.1016/j.chaos.2004.09.109
  14. N. K. Vitanov, Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 2050-2060. https://doi.org/10.1016/j.cnsns.2009.08.011
  15. H. Kim, J. -H. Bae and R. Sakthivel, Exact Travelling Wave Solutions of two Important Nonlinear Partial Differential Equations, Z. Naturforsch, 69a (2014) 155-162.
  16. J. H. Choi, H. Kim and R. Sakthivel, Exact solution of the wick-type stochastic fractional coupled KdV equations, J. Math. Chem., 52 (2014) 2482-2493. https://doi.org/10.1007/s10910-014-0406-1
  17. M. M. Kabir, A. E. Y. K. Aghdam and A. Y. Koma, Modi ed Kudryashov method for nding exact solitary wave solutions of higher order nonlinear equations, Math. Methods Appl. Sci., 34(2) (2011) 213-219. https://doi.org/10.1002/mma.1349
  18. S. M. Ege and E. Misirli, The modified Kudryashov method for solving some fractional-order nonlinear equations, Adv. Differ. Eq., 135(1) (2014).
  19. N. A. Kudryashov and A. S. Zakharchenko, Plainleve analysis and exact solu-tions of a predator-prey system with diffusion, Math. Metho. Appl. Sci., DOI: 10.1002/mma.3156 (2014).
  20. N. A. Kudryashov, Painleve analysis and exact solutions of the fourth-order equa-tion for description of nonlinear waves, Commun. Nonlinear Sci. Numer. Simu- lat., 28 (2015) 1-9. https://doi.org/10.1016/j.cnsns.2015.03.021
  21. A. M. Abourabia, K. M. Hassan and E. S. Selim, Painleve test and some exact solutions for (2+1)-dimensional modi ed Korteweg-de Vries-Bergers equation, Int. J. Comput. Meth., 10(3) (2013) 1250058. https://doi.org/10.1142/S0219876212500582
  22. Y. Liu, F. Duan and C. Hu, Painleve property and exact solutions to a (2+1)-dimensional KdV-mKdV equation, J. of Appl. Math. and Phys., 3(6) (2015) 36083.
  23. P. J. Morrison, J. D. Meiss and J. R. Cary, Scattering of Regularized-Long-Wave Solitary Waves, Physica D. Nonlinear Phenomena, (1984) 324-336.
  24. A. Bekir and E. Yusufoglu, Numerical simulation of equal-width wave equation, Computers and Mathematics with Applications, 54 (2007) 1147-1153. https://doi.org/10.1016/j.camwa.2006.12.080
  25. K. R. Raslan, Exact Solitary Wave Solutions of Equal WidthWave and Related Equations Using a Direct Algebraic Method, International Journal of Nonlinear Science, 6(3) (2008) 246-254.
  26. A. Maccari, The Kadomtsev.Petviashvili Equation as a Source of Integrable Model Equations, J. Math. Phys., 37 (1996) 6207-6212. https://doi.org/10.1063/1.531773
  27. S. Zhang, Exp-function method for solving Maccari's system, Phys. Lett. A, 371 (2007) 65-71. https://doi.org/10.1016/j.physleta.2007.05.091