DOI QR코드

DOI QR Code

Churn Analysis of Maximum Level Users in Online Games

온라인 게임 내 최고 레벨 유저의 이탈 분석

  • 박건우 (한국과학기술원 전산학부 웹사이언스대학원) ;
  • 차미영 (한국과학기술원 문화기술대학원)
  • Received : 2016.08.05
  • Accepted : 2016.12.05
  • Published : 2017.03.15

Abstract

In MMORPG (Massively Multiplayer Online Role-Playing Game), users advance their own characters to get to the maximum (max) level by performing given tasks in the game scenario. Although it is crucial to retain users with high levels for running online games successfully, little efforts have been paid to investigate them. In this study, by analyzing approximately 60 million in-game logs of over 50,000 users, we aimed to investigate the process through which users achieve the max level and churn of such users since the moment of achieving the max level, and determine possible indicators related to churn after the max level. Based on the result, we can predict churn of the max level users by employing behavioral patterns before the max level. Moreover, we found users who are socially active and communicate with many people before the max level are less likely to leave the service (p<0.05). This study supports that communication patterns are important factors for persistent usage of the users who achieve the max level, which has practical implications to guide elite users on enjoying online games in the long run.

대규모 다중 사용자 온라인 롤플레잉 게임 유저들은 시나리오를 따라 주어진 임무들을 수행하며 최고 레벨을 향해 캐릭터를 성장시킨다. 최고 레벨 유저를 보유하는 것이 온라인 게임의 성공적 운영에 중요함에도 불구하고 이들에 대한 연구는 크게 이루어지지 않았다. 이 연구에서는 5만여명 유저들에 의해 기록된 약 6천만 건의 게임 내 로그 데이터 분석을 통해 유저들이 최고 레벨에 도달하는 과정과 그 이후 게임 이탈 현상을 분석하며, 최고 레벨 유저의 이탈에 영향을 미치는 요인을 이해하고자 한다. 분석 결과, 최고 레벨 이전의 행동 패턴을 이용해 최고 레벨 유저의 이탈을 예측할 수 있으며, 최고 레벨 이전에 사회적으로 활발하고 많은 사람들과 대화하는 게이머가 덜 떠난다는 것을 발견하였다(p<0.05). 이 연구는 유저간 소통 패턴이 최고 레벨에 도달한 유저들의 지속적인 사용에 주요한 요인임을 확인하며, 엘리트 유저의 지속적인 게임 이용을 유도하는 실무적 시사점을 제공한다.

Keywords

References

  1. Statistica (2016), "Facts and figures on the 2016 MMO market," [Online]. Available: http://bit.ly/294bmlp
  2. B. Kim, J. Lee, and Y.S. Kang, "A Study of a User's Continuous Usage Behavior in a Mobile Data Service Platform: The Roles of Perceived Fee and Perceived Anxiety," Information Systems Review 12.1 (2010): 209-227. (in Korean)
  3. H-C. Kim, S. Huh, and J-H. Choi, "Factors affecting the continuous use intention of smartphone Social Network Games: With a focus on the value model," Journal of Korea Game Society 12.3 (2012): 11-24. https://doi.org/10.7583/JKGS.2012.12.3.11
  4. N. Ducheneaut, N. Yee, E. Nickell, R.J. Moore "Building an MMO with mass appeal a look at gameplay in world of warcraft," Games and Culture 1.4 (2006): 281-317. https://doi.org/10.1177/1555412006292613
  5. N. Yee, "Motivations for play in online games," Cyber Psychology & behavior 9.6 (2006): 772-775. https://doi.org/10.1089/cpb.2006.9.772
  6. A. Leavitt, B.C. Keegan, and J. Clark, "Ping to Win?: Non-Verbal Communication and Team Performance in Competitive Online Multiplayer Games," Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, ACM, 2016.
  7. Y. Jin, J.W. Kim, and H.J. Lee, "User Enjoyment Elements on Mobile and Online Games: Comparative Study between China and Korea," Journal of the Korea society of IT services 12 (2013): 381-397. (in Korean) https://doi.org/10.9716/KITS.2013.12.4.381
  8. A. Leavitt, J. Clark, and D. Wixon, "Uses of Multiple Characters in Online Games and Their Implications for Social Network Methods," Proc. of the Conference on Computer-Supported Cooperative Work & Social Computing, ACM, 2016.
  9. B.A. Nardi, S. Ly, and J. Harris, "Learning conversations in World of Warcraft," Proc. of the Hawaii International Conference on System Sciences, IEEE, 2007.
  10. R. Bartle, "Hearts, clubs, diamonds, spades: Players who suit MUDs," Journal of MUD research 1.1 (1996): 19.
  11. J. Yang, X. Wei, M.S. Ackerman, and L.A. Adamic, "Activity Lifespan: An Analysis of User Survival Patterns in Online Knowledge Sharing Communities," Proc. of the ICWSM, AAAI, 2010.
  12. K. Park, I. Weber, M. Cha, and C. Lee, "Persistent sharing of fitness app status on twitter," Proc. of the Conference on Computer-Supported Cooperative Work & Social Computing, ACM, 2016.
  13. H-J. Kim, J-Y. Lim, and J-D. Sung, "Churn Management Minging Model based on Integrated Customer ID," Proc. of the Korean Information Science Society Conference 29.2III (2002): 58-60. (in Korean)
  14. Y-K. Han and Y-W. Koo, "Design and Implementation of Call Object Management mechanism for Customer Channel integration of Customer Relationship Management Environment," KIISE Transactions on Computing Practices 13.7 (2007): 520-533. (in Korean)
  15. T. Debeauvais, B. Nardi, D.J. Schiano, N. Ducheneaut, and N. Yee, "If you build it they might stay: Retention mechanisms in World of Warcraft," Proc. of the 6th international conference on foundations of digital games, ACM, 2011.
  16. Z. Bobora, J. Srivastava, K-W. Hsu, and D. Williams, "Churn prediction in mmorpgs using player motivation theories and an ensemble approach," Proc. of the International Conference on Social Computing, IEEE, 2011.
  17. K.B. Shores, Y. He, K.L. Swanenburg, R. Kraut, and J. Riedl, "The identification of deviance and its impact on retention in a multiplayer game," Proc. of the conference on Computer supported cooperative work & social computing, ACM, 2014.
  18. D. Williams, N. Yee, and S. Caplan, "Who plays, how much, and why? A behavioral player census of a virtual world," Journal of Computer Mediated Communication 13.4 (2008): 993-1018. https://doi.org/10.1111/j.1083-6101.2008.00428.x
  19. J-K. Lou, K. Park, M. Cha, J. Park, C-L. Lei, and K-T. Chen, "Gender swapping and user behaviors in online social games," Proc. of the international conference on World Wide Web. ACM, 2013.
  20. R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, Series B (Methodological) (1996): 267-288.
  21. Tibshirani, R., "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.3 (2011): 273-282. https://doi.org/10.1111/j.1467-9868.2011.00771.x
  22. N. Ducheneaut, N. Yee, E. Nickell, and R.J. Moore, "Alone together?: exploring the social dynamics of massively multiplayer online games," Proc. of the SIGCHI conference on Human Factors in computing systems, ACM, 2006.
  23. M. Szell and S. Thurner, "How women organize social networks different from men," Scientific reports 3 (2013).
  24. H. Jo, J. Roh, B.S. Hong, J.K. Lee, Influence of Characteristics on Continuance Intention in the Context of Mobile Social Network Game, The Journal of Internet Electronic Commerce Research, 15.4 (2015): 159-178. (in Korean) https://doi.org/10.1007/s10660-015-9178-3