DOI QR코드

DOI QR Code

Face Representation Based on Non-Alpha Weberface and Histogram Equalization for Face Recognition Under Varying Illumination Conditions

조명 변화 환경에서 얼굴 인식을 위한 Non-Alpha Weberface 및 히스토그램 평활화 기반 얼굴 표현

  • 김하영 (가톨릭대학교 디지털미디어학과) ;
  • 이희재 (가톨릭대학교 디지털미디어학과) ;
  • 이상국 (가톨릭대학교 미디어기술콘텐츠학과)
  • Received : 2016.10.07
  • Accepted : 2016.12.16
  • Published : 2017.03.15

Abstract

Facial appearance is greatly influenced by illumination conditions, and therefore illumination variation is one of the factors that degrades performance of face recognition systems. In this paper, we propose a robust method for face representation under varying illumination conditions, combining non-alpha Weberface (non-alpha WF) and histogram equalization. We propose a two-step method: (1) for a given face image, non-alpha WF, which is not applied a parameter for adjusting the intensity difference between neighboring pixels in WF, is computed; (2) histogram equalization is performed to non-alpha WF, to make a uniform histogram distribution globally and to enhance the contrast. $(2D)^2PCA$ is applied to extract low-dimensional discriminating features from the preprocessed face image. Experimental results on the extended Yale B face database and the CMU PIE face database show that the proposed method yielded better recognition rates than several illumination processing methods as well as the conventional WF, achieving average recognition rates of 93.31% and 97.25%, respectively.

얼굴 외형은 조명의 영향을 크게 받기 때문에 조명 변화는 얼굴 인식 시스템의 성능을 저하시키는 요인 중 하나이다. 본 논문에서는 non-alpha Weberface(non-alpha WF)와 히스토그램 평활화를 결합하여 조명 변화에 강건한 얼굴 표현 방법을 제안한다. 먼저, 입력 얼굴 영상에 대해 명암 대비 조절 파라미터를 적용하지 않은 non-alpha WF를 생성한다. 이후, non-alpha WF의 히스토그램 분포를 전역적으로 균일하게 하고 명암 대비를 향상시키기 위해 히스토그램 평활화를 수행한다. 제안하는 방법을 통해 전처리된 얼굴 영상으로부터 저차원 판별 특징을 추출하기 위해 $(2D)^2PCA$를 적용한다. Extended Yale B 및 CMU PIE 얼굴 데이터베이스에 대해 실험한 결과, 제안하는 방법으로 각각 93.31%와 97.25%의 평균 인식률을 얻었다. 또한, 제안하는 방법은 기존 WF뿐만 아니라 여러 조명 처리 방법들과 비교하여 향상된 인식 성능을 보였다.

Keywords

Acknowledgement

Supported by : 산학협력선도대학(LINC)

References

  1. K. Kim, D. Boo, J. Ahn, S. Kwak, and H. Byun, "Face Recognition Evaluation of an Illumination Property of Subspace Based Feature Extractor," Journal of KIISE : Software and Applications, Vol. 34, No. 7, pp. 681-687, 2007. (in Korean)
  2. H. Lee and S. Jung, "A Real-Time Face Recognition System Using Fast Face Detection," Journal of KIISE : Software and Applications, Vol. 32, No. 12, pp. 1247-1260, 2005. (in Korean)
  3. M. Turk and A. Pentland, "Eigenfaces for Recognition," Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  4. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711-720, 1997. https://doi.org/10.1109/34.598228
  5. X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, "Face Recognition Using Laplacianfaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3, pp. 328-340, 2005. https://doi.org/10.1109/TPAMI.2005.55
  6. S. Choi, C. Choi, and N. Kwak, "Face Recognition Based on 2D Images Under Illumination and Pose Variations," Pattern Recognition Letters, Vol. 32, Issue 4, pp. 561-571, 2011. https://doi.org/10.1016/j.patrec.2010.11.021
  7. X. Tan and B. Triggs, "Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions," IEEE Transactions on Image Processing, Vol. 19, No. 6, pp. 1635-1650, 2010. https://doi.org/10.1109/TIP.2010.2042645
  8. S.M. Pizer, E.P. Amburn, J.D. Austin, R. Cromartie, A. Geselowitz, T. Greer et al., "Adaptive Histogram Equalization and Its Variations," Computer Vision, Graphics, and Image Processing, Vol. 39, Issue 3, pp. 355-368, 1987. https://doi.org/10.1016/S0734-189X(87)80186-X
  9. M. Savvides and V. Kumar, "Illumination Normalization Using Logarithm Transforms for Face Authentication," Proc. of International Conference on Audioand Video-Based Biometric Person Authentication, pp. 549-556, 2003.
  10. S. Shan, W. Gao, B. Cao, and D. Zhao, "Illumination Normalization for Robust Face Recognition Against Varying Lighting Conditions," Proc. of IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 157-164, 2003.
  11. C. Fan and F. Zhang, "Homomorphic Filtering Based Illumination Normalization Method for Face Recognition," Pattern Recognition Letters, Vol. 32, Issue 10, pp. 1468-1479, 2011. https://doi.org/10.1016/j.patrec.2011.03.023
  12. D.J. Jobson, Z. Rahman, and G.A. Woodell, "A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes," IEEE Transactions on Image Processing, Vol. 6, No. 7, pp. 965-976, 1997. https://doi.org/10.1109/83.597272
  13. R. Gross and V. Brajovic, "An Image Preprocessing Algorithm for Illumination Invariant Face Recognition," Proc. of International Conference on Audioand Video-Based Biometric Person Authentication, pp. 10-18, 2003.
  14. H. Wang, S.Z. Li, and Y. Wang, "Face Recognition Under Varying Lighting Conditions Using Self Quotient Image," Proc. of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 819-824, 2004.
  15. T. Zhang, Y.Y. Tang, B. Fang, Z. Shang, and X. Liu, "Face Recognition Under Varying Illumination Using Gradientfaces," IEEE Transactions on Image Processing, Vol. 18, No. 11, pp. 2599-2606, 2009. https://doi.org/10.1109/TIP.2009.2028255
  16. B. Wang, W. Li, W. Yang, and Q. Liao, "Illumination Normalization Based on Weber's Law with Application to Face Recognition," IEEE Signal Processing Letters, Vol. 18, No. 8, pp. 462-465, 2011. https://doi.org/10.1109/LSP.2011.2158998
  17. A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, New Jersey, 1989.
  18. Z. Yang, Y. Jiang, Y. Wu, Z. Lu, W. Li, and Q. Liao, "Weber Binary Pattern and Weber Ternary Pattern for Illumination-Robust Face Recognition," Proc. of Signal and Information Processing Association Annual Summit and Conference, pp. 1050-1053, 2015.
  19. D. Zhang and Z. Zhou, "$(2D)^2PCA$: Two-Directional Two-Dimensional PCA for Efficient Face Representation and Recognition," Neurocomputing, Vol. 69, Issue 1-3, pp. 224-231, 2005. https://doi.org/10.1016/j.neucom.2005.06.004
  20. K. Lee, J. Ho, and D.J. Kriegman, "Acquiring Linear Subspaces for Face Recognition Under Variable Lighting," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, pp. 684-698, 2005. https://doi.org/10.1109/TPAMI.2005.92
  21. T. Sim, S. Baker, and M. Bsat, "The CMU Pose, Illumination, and Expression (PIE) Database," Proc. of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46-51, 2002.
  22. H.F. Kaiser, "The Application of Electronic Computers to Factor Analysis," Educational and Psychological Measurement, Vol. 20, pp. 141-151, 1960. https://doi.org/10.1177/001316446002000116