DOI QR코드

DOI QR Code

Management of Organic Matters by Constructed Treatment Wetlands during Rainfall Events

강우시 인공습지를 이용한 유기물관리

  • Lee, Sang-Pal (Department of Environment Engineering, Kumoh National Institute of Technology) ;
  • Park, Je-Chul (Department of Environment Engineering, Kumoh National Institute of Technology)
  • 이상팔 (금오공과대학교 환경공학과) ;
  • 박제철 (금오공과대학교 환경공학과)
  • Received : 2017.01.26
  • Accepted : 2017.02.14
  • Published : 2017.03.31

Abstract

This study analyzed the changes in the concentrations of organic matters in constructed treatment wetlands, coming from discharge water from a sewage treatment plant and non-point pollutant sources during rainfall events. At the beginning of a rainfall event, a massive amount of particulate organic matter flowed in, and was removed from the sedimentation basin (S1, S2); dissolved organic matter was removed after passing through stepwise treatment processes in the wetland. During dry period in the wetland, the removal efficiency rate for COD and TOC was -21 and -7%, respectively; during the rainfall event, the removal efficiency rate for COD and TOC were 47 and 43%, respectively. The highly-concentrated organic matters that flowd in at the beginning of the rainfall event was stabilized by various structures in the wetland before water discharge. Cyanobacteria blooms annually at the confluence of the So-ok stream and Daecheong Lake. Therefore, it is expected that the wetland will contribute significantly to reducing cyanobacteria and improving water quality in the area.

Keywords

References

  1. Bachand, P. A. M., Horne, A. J., 1999, Denitrification in constructed free-water surface wetlands : II. Effects of vegetation and temperature, Ecol. Eng., 14, 17-32. https://doi.org/10.1016/S0925-8574(99)00017-8
  2. Barber, L. B., Leenheer, J. A., Noyes, T. I., Stiles, E. A., 2001, Nature and transformation of dissolved organic matter in treatment wetlands, Environ. Sci. Technol., 35, 4805-4816. https://doi.org/10.1021/es010518i
  3. Brix, H., 1997, Do macrophytes play a role in constructed treatment wetlands?, Water Sci. Technol., 35(5), 11-17. https://doi.org/10.1016/S0273-1223(97)00047-4
  4. EPA, 2000, Design manual : Constructed wetlands treatment of municipal wastewater, EPA 625/R-99/010, Cinciati, Ohio, 12-20.
  5. Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., Camper, A. K., Stein, O. R., 2009, Microbial processes influencing performance of treatment wetlands : A Review, Ecol. Eng., 35, 987-1004. https://doi.org/10.1016/j.ecoleng.2008.12.030
  6. Gerberg, R. M., Elkins, B. V., Lyon, S. R., Goldman, C. R., 1986, Role of aquatic plants in wastewater treatment by artificial wetland, Water Res., 20(3), 363-368. https://doi.org/10.1016/0043-1354(86)90085-0
  7. Greenway, M., The role of macrophytes in nutrient removal using constructed wetlands, In: Singh, S. N., Tripathi, R. D. (Eds.), 2007, Environmental bioremediation technologies, Springer, Berlin, Heidelberg, 331-351.
  8. Hsu, C. B., Hsieh, H. L., Yang, L., Wu, S. H., Chang, J. S., Hsiao, S. C., Su, H. C., Yeh, C. H., Ho, Y. S., Lin, H. J., 2011, Biodiversity of constructed wetlands for wastewater treatment, Ecol. Eng., 37, 1533-1545. https://doi.org/10.1016/j.ecoleng.2011.06.002
  9. Hsueh, M. L., Yang, L., Hsieh, L. Y., Lin, H. J., 2014, Nitrogen removal along the treatment cells of a free-water surface constructed wetland in subtropical Taiwan, Ecol. Eng., 73, 579-587. https://doi.org/10.1016/j.ecoleng.2014.09.100
  10. Horne, A. J., Goldman, C. R., 1994, Limnology, McGraw-Hill, Inc., New York, 115-132.
  11. Jou, C. J., Lee, C. L., Fu, Y. T. V., Kao, C. M., 2012, Simulation of a long narrow type constructed wetland using the stream model QUAL2K, Sustain. Environ. Res., 22(4), 255-260.
  12. Kadlec, R. H., Wallace, S. D., 2008, Treatment wetlands, 2nd ed. CRC Press, Boca Raton, FL., 20-185.
  13. Lee, G. J., Seong, J. U., Park, J. H., Joe, G. S., Park, J. C., 2010, Runoff characteristics of nonpoint pollutants sources in urban area, J. Environ. Sci. Int., 19(7), 819-827. https://doi.org/10.5322/JES.2010.19.7.819
  14. Mitsch, W. J., Gosselink, J. G., 2000, Wetlands, 3rd ed. John Wiley & Sons, Inc., New York, 15-125.
  15. Mitsch, W. J., Jogensen, S. E., 2003, Ecological engineering and ecosystem restoration, John Wiley & Sons, Inc., Hoboken, NJ., 256-285.
  16. Ministry of Environment (MOE), 2008, http://www.me.go.kr
  17. Ministry of Environment (MOE), 2011, http://www.me.go.kr
  18. Reddy, K. R., DeBusk, T. A., 1987, State-of-the-art utilization of aquatic plants in water pollution control, Water Sci. Technol., 19(10), 61-79.
  19. Seong, J. U., Park, J. C., 2012, Effects of sewage effluent on organic matters of Nakdong River : Comparison of daily loading, Korean J. Ecol. Environ., 45(2), 210-217.
  20. Sundaravadivel, M., Vigneswaran, S., 2001, Constructed wetlands for wastewater treatment, Cri. Rev. Environ. Sci. Technol., 31(4), 351-409. https://doi.org/10.1080/20016491089253
  21. Thurman, E. M., 1985, Organic geochemistry of natural water, Kluwer Academic Publishers, 25-185.
  22. Wetzel, R. G., 2001, Limnology : Lake and river ecosystems 3rd edition, Academic Press, 731-780.
  23. Zhang, C. B., Wang, J., Liu, W. L., Zhu, S. X., Ge, H. L., Chang, S. X., Chang, J., Ge, Y., 2010, Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland, Ecol. Eng., 36, 62-68. https://doi.org/10.1016/j.ecoleng.2009.09.010