DOI QR코드

DOI QR Code

Parameter Optimization for Cost Reduction of Microbubble Generation by Electrolysis

  • 투고 : 2016.11.21
  • 심사 : 2017.01.26
  • 발행 : 2017.03.31

초록

To lower the operational cost of microbubble generation by electrolysis, optimization of parameters limiting the process must be carried out for the process to be fully adopted in environmental and industrial settings. In this study, four test electrodes were used namely aluminum, iron, stainless steel, and Dimensionally Sable Anode (DSA). We identified the effects and optimized each operational parameter including NaCl concentration, current density, pH, and electrode distance to reduce the operational cost of microbubble generation. The experimental results showed that was directly related to the rate and cost of microbubble generation. Adding NaCl and narrowing the distance between electrodes caused no substantial changes to the generation rate but greatly decreased the power requirement of the process, thus reducing operational cost. Moreover, comparison among the four electrodes operating under optimum conditions revealed that aluminum was the most efficient electrode in terms of generation rate and operational cost. This study therefore presents significant data on performing costefficient microbubble generation, which can be used in various environmental and industrial applications.

키워드

참고문헌

  1. Adhoum, N., Monser, L., Bellakhal, N., Belgaied, J., 2004, Treatment of electroplating wastewater containing $Cu^{2+},\;Zn^{2+}$ and Cr(IV) by electrocoagulation, J. Hazard. Mater., B112, 207-213.
  2. Alam, R., 2015, Fundamentals of electro-flotation and electrophoresis and applications in oil sand tailings management, Doctoral Dissertation, University of Western Ontario, Ontario, Canada.
  3. Araya-Farias, M., Mondor, M., Lamarche, F., Tajchakavit, S., Makhlouf, J., 2008, Clarification of apple juice by electroflotation, Innov. Food Sci. Emerg., 9, 320-327. https://doi.org/10.1016/j.ifset.2007.08.002
  4. Baierle, F., John, D. K., Souza, M. P., Bjerk, T. R., Moraes, M. S. A., Hoeltz, M., Rohlfes, A. L. B., Camargo, M. E., Corbellini, V. A., Schneider, R. C. S., 2015, Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes, Chem. Eng. J., 267, 274-281. https://doi.org/10.1016/j.cej.2015.01.031
  5. Bande, R. M., Prasad, B., Mishra, I. M., Wasewar, K. L., 2008, Oil field effluent water treatment for safe disposal by electroflotation, Chem. Eng. J., 137, 503-509. https://doi.org/10.1016/j.cej.2007.05.003
  6. Bennet, A. J. R., Champmen, W. R., Dell, C. C., 1958, Studies in the froth flotation of coal, Third International Coal Preparation Congress, Brussels-Leige, E2, 452-462.
  7. Bloom, F., Heindel, T. J., 2003, Modeling flotation separation in a semi-batch process, Chem. Eng. Sci., 58, 353-365. https://doi.org/10.1016/S0009-2509(02)00525-0
  8. Burns, S. E., Yiacoumi, S., Tsouris, C., 1997, Microbubble generation for environmental and industrial separations, Sep. Purif. Technol., 11, 221-232. https://doi.org/10.1016/S1383-5866(97)00024-5
  9. Casillas, H. A. M., Cocke, D. L., Gomes, J. A. G., Morkovsky, P., Parga, J. R., Peterson, E., Garcia, C., 2007, Electrochemistry behind electrocoagulation using iron electrode, The Electrochem. Soc. ECS Transact., 6, 1-15.
  10. Chandran, P., Bakshi, S., Chatterjee, D., 2015, Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water, Chem. Eng. Sci., 138, 99-109. https://doi.org/10.1016/j.ces.2015.07.041
  11. Chen, G., 2004, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  12. Chen, X., Chen, G., 2010, Electro-flotation in Comninellis, C., Chen, G. (eds.), Electrochemistry for the environment, Springer Science+Business Media, LLC., 263-277.
  13. Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., Du, M., 2010, Electro-coagulation-flotation process for algae removal, J. Hazard. Mater., 177, 336-343. https://doi.org/10.1016/j.jhazmat.2009.12.037
  14. Goor, C., van de., 2015, Influence of temperature and pH on the Hydrogen Evolution Reaction (HER) on platinum, Undergraduate Thesis, University of Twente, Enschede, Netherlands.
  15. Janssen, J. J. L., Sillen, C. W. M. P., Barendrecht, E., Van Stralen, S. J. D., 1984, Bubble behavior during oxygen and hydrogen evolution at transparent electrodes in KOH solution, Electrochim. Acta., 29, 633-642. https://doi.org/10.1016/0013-4686(84)87122-4
  16. Ketlar, D. R., Mallikarjunan, R., Venkatachalam, S., 1991, Electroflotation of quartz fine, Int. J. Miner. Process., 31, 127-138. https://doi.org/10.1016/0301-7516(91)90009-8
  17. Keshmirizadeh, E., Yousefi, S., Rofouei, M. K., 2011, An Investigation on the new operational parameter effective in Cr(VI) removal efficiency: A Study on electrocoagulation by alternating pulse current, J. Hazard. Mater., 190, 119-124. https://doi.org/10.1016/j.jhazmat.2011.03.010
  18. Khosla, N. K., Venkatachalam, S., 1991, Pulsed electrogeneration of bubbles for electroflotation, J. Appl. Electrochem., 21, 986-990. https://doi.org/10.1007/BF01077584
  19. Lee, J. E., Lee, J. K., 2002, Effect of microbubbles and particle size on the particle collection in the column flotation, Korean J. Chem. Eng., 19, 703-710. https://doi.org/10.1007/BF02699321
  20. Li, P., 2006, Development of advanced water treatment technology using microbubbles, Ph. D. Dissertation, Keio University, Tokyo, Japan.
  21. Li, P., Tsuge, H., 2006, Water treatment by induced air flotation using microbubbles, J. Chem. Eng. Jpn., 39, 896-903. https://doi.org/10.1252/jcej.39.896
  22. Liuyi, R., Yimin, Z., Wenqing, Q., Shenxu, B., Peipei, W., Congren, Y., 2014, Investigation of condition-induced bubble size and distribution in electroflotation using a high-speed camera, Int. J. Min. Sci. Technol., 24, 7-12. https://doi.org/10.1016/j.ijmst.2013.12.002
  23. Mansour, L. B., Chalbi, S., Kesentini, I., 2007, Experimental study of hydrodynamic and bubble size distributions in electroflotation process, Indian J. Chem. Technol., 14, 253-257.
  24. Mota, I. O., de Castro, J. A., Casqueira, R. G., de Oliveira, A. G., 2014, Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals, J. Mater. Res. Technol., 4, 109-113.
  25. Nagai, N., Takeuchi, M., Kimura, T., Oka, T., 2003, Existence of optimum space between electrodes on hydrogen production by water electrolysis, Int. J. Hydrogen Ene., 28, 35-41. https://doi.org/10.1016/S0360-3199(02)00027-7
  26. Opu, M. S., 2015, Effect of operating parameters on performance of alkaline water electrolysis, Int. J. Thermal & Environ. Eng., 9, 53-60.
  27. Park, Y. S., Kim, D. S., 2007, Study on bubble generation and size by dimensionally stable anode in electroflotation process, J. Environ. Sci. Int., 16(10), 1189-1195. https://doi.org/10.5322/JES.2007.16.10.1189
  28. Parmar, R., Majumder, S. K., 2013, Microbubble generation and microbubble-aided transport process intensification-A State of the art report, Chem. Eng. Process., 64, 79-97. https://doi.org/10.1016/j.cep.2012.12.002
  29. Petrovic, J., Thomas, G., 2008, Reaction of aluminum with water to produce hydrogen, a study of issues related to the use of Aluminum for on-board vehicular hydrogen storage, U.S. Department of Energy.
  30. Rahmani, A. R., Nematollahi, D., Godini, K., Azarian, G., 2013, Continuous thickening of activated sludge by electro-flotation, Sep. Purif. Technol., 107, 166-171. https://doi.org/10.1016/j.seppur.2013.01.022
  31. Rubio, J., Souza, M. L., Smith, R. W., 2002, Overview of flotation as a wastewater treatment technique, Miner. Eng., 15, 139-155. https://doi.org/10.1016/S0892-6875(01)00216-3
  32. Tan, Y. J. K., Pham, B., Zong, Y., Perez, C., Maris, D. O., Hemphill, A., Miao, C. H., Matula, T. J., Mourad, P. D., Wei, H., Sellers, D., Horner, P. J., Pun, S. H., 2016, Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain, J. Cont. Rel., 231, 86-93. https://doi.org/10.1016/j.jconrel.2016.02.003
  33. Weber, J., Agblevor, F. A., 2005, Microbubble fermentation of Trichoderma Reesei for cellulose production, Process. Biochem., 40, 669-676. https://doi.org/10.1016/j.procbio.2004.01.047