Abstract
Panorama image is a single image obtained by combining images taken at several viewpoints through matching of corresponding points. Existing panoramic image generation methods that find the corresponding points are extracting local invariant feature points in each image to create descriptors and using descriptor matching algorithm. In the case of video sequence, frames may be a lot, so therefore it may costs significant amount of time to generate a panoramic image by the existing method and it may has done unnecessary calculations. In this paper, we propose a method to quickly create a single panoramic image from a video sequence. By assuming that there is no significant changes between frames of the video such as in locally, we use the FAST algorithm that has good repeatability and high-speed calculation to extract feature points and the Lucas-Kanade algorithm as each feature point to track for find the corresponding points in surrounding neighborhood instead of existing descriptor matching algorithms. When homographies are calculated for all images, homography is changed around the center image of video sequence to warp images and obtain a planar panoramic image. Finally, the spherical panoramic image is obtained by performing inverse transformation of the spherical coordinate system. The proposed method was confirmed through the experiments generating panorama image efficiently and more faster than the existing methods.
파노라마 영상은 여러 시점에서 촬영한 영상들을 대응점들의 정합을 통해 합성하여 얻은 단일 영상을 말한다. 기존의 파노라마 영상 생성 방법들은 대응점들을 구할 때 각 영상에서 지역적 불변 특징점을 추출하여 서술자를 생성하고 매칭 알고리즘을 사용한다. 동영상의 경우, 프레임 수가 많아 기존의 방법으로 파노라마 영상을 생성하는 것이 상당한 시간을 소비하고 불필요한 계산을 한다. 본 논문에서는 동영상을 입력 받아 구면 파노라마 영상을 효과적으로 생성하는 기법을 제안한다. 동영상의 프레임 간의 변화가 지역적으로 크지 않으며 연속적이라는 전제 조건으로 반복성 및 계산속도가 높은 FAST 알고리즘을 사용하여 특징점들을 추출하고, Lucas-Kanade 알고리즘을 통해 각 특징점들을 추적하여 그 주변에서 대응점을 찾는다. 모든 영상에 대해서 호모그래피를 계산하면 가운데 영상을 중심으로 호모그래피를 변경하고 영상을 와핑하여 평면 파노라마 영상을 얻는다. 마지막으로 구면 좌표계 역변환식을 통해 구면 파노라마 영상을 변환하여 얻는다. 실험을 통하여 제안하는 방법이 기존의 방법들보다 파노라마 영상을 빠르고 효과적으로 생성하는 것을 확인하였다.