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James-Stein Type Estimators Shrinking towards Projection Vector
When the Norm is Restricted to an Interval

Hoh Yoo Baek'" and Su Hyang Park®

Abstract

Consider the problem of estimating a p><1 mean vector 6 (p—gq = 3), ¢ = rank(2,,) with a projection matrix 2, under the

quadratic loss, based on a sample X, X, -

-, X . We find a James-Stein type decision rule which shrinks towards projection

vector when the underlying distribution is that of a variance mixture of normals and when the norm ||  — 7,6/ is restricted to a
known interval, where 7, is an idempotent and projection matrix and rank (2,.) = q. In this case, we characterize a minimal
complete class within the class of James-Stein type decision rules. We also characterize the subclass of James-Stein type

decision rules that dominate the sample mean.
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1. Introduction

The The problem considered is that of estimating
with quadratic loss function the mean vector of a
compound multinormal distribution when the norm
Il @ — P8 Il is restricted known interval. The class of
estimation rules considered will consist of Lindley type
estimators only. Such a class was introduced by

James-Stein!!

and Lindley™ in order to prove that some
of its members dominate the sample mean in the
multinormal case. Strawderman'® also derived a similar
result for the more general case considered in this paper
of a compound multinormal distribution. The problem of
estimation of a mean under constraint has an old origin
and recently focussed again in the context of curved
model in the works of Amari[4], Kariyam, Perron and
Giri®, Merchand and Giri"”, and Baek™ among others.
A study of compound multinormal distributions and the
estimation of their location vectors was carried out by
Berger[gl.

In section 2, we present the general setting of our

problem and develop necessary notations. In section 3,
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we examine the estimation problem based on a Lindley
type decision rule when the norm [ § — P01l is
restricted to a known interval. In this case, we give to the
subclass of Lindley type estimators which

dominate the sample mean when the norm is restricted
to a known interval.

2. Notation and Preliminaries

Letz = (2, -~ ,2,)’,p — ¢ = 3, bean observation
from a compound multinormal distribution with
unknown location parameter 8 (p < 1) and mixture
parameter H( + ), where H( +) represents a known
c.d.f defined on the interval (0, co ). In other words, we
assume that the random variable X generating our
observation z admits the representation,

LX|Z=2)=N,0,2)Vz>0 2.1

Z being the positive random variable with c.d.f.
H(+). Our problem concerns the estimation of the
location parameter 6 with loss function.

L, 8(x)) = (8(x)—0) (8z) —6), with, 66 =
0ER| 16— P00 E[N,\],0=<) <)\ < cowhere
Py, is an idempotent and projection matrix with
rank (P;,) =¢ and the decision rule &, (- ):
R"— R?| is of the form
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¢
(z—Pyx) (z— Pyx)

8z) =Ppz+|1- (z—Ppx),

cE R Restated in terms of the family of probability
density functions of X, the distributional assumption
give by expression (2.1) and the restriction on the
location parameter 6 indicate that the p.d.f. of X is

Py (z) = /(0 OO)(Qﬂ'z)*‘”/2 exp(Ha:;ij”?)dH(z) (2.2)

zE R’ and 9662. It will be also assumed that
E(Z) < oo which will guarantee the existence of the
covariance matrix X = Cov(X) = E(Z)I and the
mean vector F(X) =6. The performance of the
estimator § will be measured by its risk function
R6,8) = E[L6,8X))] = £ [(6(X)—6) (6(X)—6)],
S Qil Define

Dyy= [6: RP—R'| §(X)
C
=PyX+ (1— X PX) (X P X) (xX— P[,,.X)).
cER
where the parameter space is of the form
el =6,={9cr | 16-Pol =)}, A=o0.

Then under the assumptions 8 €6,, p—q =3 and
FE[Z] < oo, we can show that

R(9,6°) = E[(&(X) — 6°) (8(X) — 6°)]

:pE(Z)+{/

©0.0)

E—zc@—q—z) fp()\.,z)dH(z)}
23)

using the method by Baek[8]. By expression (2.3), the
unique best estimator within the class D,;,,, is given by
8" where

0 = (p-g-2)

2.4)

and its risk is

R(6,8N) = pE(Z)— (p—q—2)*
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pco,.

When 10— P60 Il =\, the use of other estimators
of the Lindley class other estimators of the Lindley class
other that will incur risk which is a strictly increasing
function of distance | c—c (\) | . To see this, we can
define #(\) such that ¢=¢(\)c (A\) and, using
expression (2.3), express /2 (6,6°) as

[/(M).f'pwz)dfl(z)r

pE(Z)+ (p—q—2)*[t*(N) — 2¢(X)]

fu()\,z)dH(Z)
0,00) z
From this we can write
RO.8) - ROV = -0 17 f0n) )
(0,00) z
(2.6)

The natural estimator 6° (X) = X is a member of the
Lindley class and has a constant risk function equal to
pE(Z) . Using the expression (2.5), we can verify that
the Lindley type estimator &° dominates the natural
estimator & if and only if 0 <c<2<c¢ (X\) for the
Lindley type estimator &° dominates the natural
estimator & if and only if 0<ec<2<c (\) for
0=06,.

3. Estimation when the Norm is Restricted
to an Interval

In this section, we study the case where the mean 6 is
restricted to a known interval [\, \,] case, no optimal
Lindley type decision rule will exist whenever A\, < A,
(but see the discussion following Corollary 3.7 for
asymptotic considerations). We can also characterize the
subclass of Lindley type decision rules that dominate the

natural estimator 6” = X when = 91; In the following,
we will denote ¢ [\, \,] = ianE[AMglc*()\) and

LA = sup yep, 2,1 (N)

Theorem 3.1 Let x be a single observation from a
p-dimensional location parameter with p.d.f. of the
form given by expression (2.1). Under the assumptions

0692, 0=\ <A<, p—qg=3 and
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E(Z) < oo, (a) the subclass
{FeD,, 1A <e<c ]} is a minimal
complete class within the class D, , and (b) the

decision rule & will be dominate the natural estimator ¢
if0<c<cA,\].

Proof. (a) Let ¢, be a real number such that
o & [r_* Al e A } Then, using expression
(2.6),if ¢, < ¢ [\, \,], we may write the difference in

risks
R(e 64)) R( [)‘1?)\2])
=[R6,6°) - 9 y*w PO
[ 0,69*[ v év*(Ho Po) 1) ]
= )fp(,\,z)dH_()

(0.00)"
q—c (6=, ) 1"

c(Ie—-ro) ) 17}

!

— \c[)\l,)\]

this last expression being positive for all § & 6;1 given
that ¢, < ¢ [\, \,]. In the same manner, the decision
rule §° with ¢ =
rule 8" if ¢, >
theorem ( ¢ (\) is easily shown to be continuous)
assures us that R(8,8) — R(6.0") >0, Ve # ¢,
when ¢*( | 6—P9)|)) =c,. These last results
guarantee  that all the rules &  with
c& {g* DAl e
the class D,;,, and the rules &° with ¢ belonging to the

¢ A5 A, ] will dominate the decision

¢ [\, A\ ], the intermediate value

*[A\1s A, ]| are inadmissible within

interval [ ¢ A e LA } cannot be improved
upon by another rule of the class D, ,. Thus, the result
of part (a) follows.

(b) Similar to last part in Section 2, the decision rule
& will dominate the decision rule &° if

R(8.8) < R(6.8),V 06
eo<c<2(]|0-Po ),
S0 <e<2¢ NN

It may also be remarked that the rule & with
c=2¢"[\,)\,] will also dominate &° under the
conditions of the theorem when A, < A, and that all the

decisions rules & with ¢ > 2¢ [\,, A, ] do not dominate
8° under the conditions of the theorem. The results
above would be more explicit if the function
1_2*[)\1,)\2} = c*(/\l) and c*[)\l,/\z} = c*()\z).

The case with no restrictions on the norm
[6—Pp| (G e , \,=0, and A\, =0c0) can be
expanded using by Strawderman’s result’’)
be showed that the & with
0<c¢<2(p—qg—2)E '(Z") are minimax rules by
showing that their risk functions are uniformly less than
or equal to the risk function (= p£(Z) ) of the minimax

and it can
decision rules

decision rule &°. This result is derived below as a
particular case of Theorem 3.1. To do so, we need to

determine the quantity ¢ [0, co]. The following three
Lemmas will prove useful in determining g* [0,c0] and,
also, g*[)\l,)\Q] .

Lemma 3.2. Let X be an arbitrary random variable
and let f and g be two real nondecreasing functions on
the support of X. Then, if the quantities Z[f(x)] and
Elg(x)] exist, Cov(f(z),g(xz)) =0 with the
inequality being strict if f and g are strictly increasing
and X is nondegenerate.

Proof. A neat proof of Lemma 3.2. is given by Chow
and Wang!".

Lemma 3.3. Let Z be a Poisson random variable with
mean v (>0) and f: (v) = Etl(p—q+2L—2)"1],
p = 4 then

0 f-,(v) = 67“/[ ]tP*q*‘sew?dt and
0,1

@) £, yia() = @) L= (p—g—2) ", (4)]
3.1

Proof. We can prove this lemma using the method by
Egerton and Laycock[11].

Lemma3.4. Let f, ( -
on [0,c0] and equal tof, (y) =

), p = 4 be a function defined
E*(p—gq+20-2)7"],
v > 0, where L is a Poisson random variable with
mean . Then,

) is a strictly decreasing function,

@) f,, (-
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(i) limf,_, (v) =(p—¢—2)7", limf,_, () =0
=07 timdd

(iii) if p > 5, yf:,q () s strictly increasing
function for v > 0.

Proof. (i) Using part (i) of Lemma 3.3, we have for
Y > >0, f;_q (’\/2)7][;—41 ('Yl )

:/ =3 (T Py g
[0,1]

(ii) By the dominated convergence theorem,

hmf;—q (v) = lim a3 (eﬂ/(t'z—l))dt

Y0 0" ¥ [0.1]

= [ e im @)
0.1]

0"

:/ T dt = (p—q—2)7"
[0,1]

N / # (lime V) dt = 0
[0,1]

=00

(i) Using Lemma 33, we have ~f:(y)=
1

5 (1—e™7), which is easily seen to be strictly

increasing. For p = 6 we obtain by the recurrence
formula given by expression (3.1),

Wy =5 0=p—a=4)f,_,_, (7)), v > 0.

1
2
which must be strictly increasing given that function
fo—y—a(+) isstrictly decreasing by part ( i ).

In the following, we will set £ ' [Z '] equal to zero
if the expectation £[Z '] = oo .

Theorem 3.5. The function ¢ (- ) defined by
expression (2.4) satisfies the following properties :

@cc(\)=(p—q¢-2)EZ'Ix=0

(b) ¢ (y) = k= Zis constant with probability one and,

(c)forp = 5,

Proof. (a) Expression (2.4) can be rewritten as

J. Chosun Natural Sci., Vol. 10, No. 1, 2017

E”[f,—, (X, 2)]
EZZ7 (N D))

() =(p—g—2)

By applying Lemma 3.2 to the functions f,_, (X, 2)
and Z !, the function foeyg (X, Z) being an increasing
function by part (i) of Lemma 3.4, we have for A > 0,

avl(f, ,X\2),-Z2")=0
=rz ', 2] =Ez " Ff,_,(\, 2)]

=) = p—q—2)E 7]

(o] *

:>)\200 \) = (p—q—2)E 7]

The reverse inequality is obtained by observing that
¢ (0) = (p—q—2)E '[Z7"].

(b) The constancy of ¢ (\) implies

*

=k=¢(0) =@p—q-2)E {71]

>(p7q717§)fp7q(k,z)d1{(z) =0

Since both f,_,(X,Z) and —kz ' are strictly
increasing function of z, we have by Lemma 3.2, for
nondegenerate Z,

C’ov(fp,q(A,Z),p—q—Q—kfl) >0
= Ep—q—2-kzZ ')f,_ (X, 2)] >
Elp—q—2—kzZ )] Elf,_,(\,2)] =0

which results in a contradiction implying Z is constant
with probability one.

(¢) By applying Lemma 3.2 to the functions
-1 p,q(/\,Z) and =, the function — 2, p,q(/\,Z)
being an increasing function by virtue of part (iii) of
Lemma 3.4, wehave forp > 5 and A\ > 0,

v(-z2"f, (X, 2),2) =0
=£%lf, . 2)] = Ez ', (A 2)|ElZ]

=c¢ (\) < (p—q—2) ElZ]

SIS (MN) < (p—q—2) ElZ]

“A=0°
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The reverse inequality is obtained by verifying that
lime (A) = (p—q—2) E{Z] whenever p > 5. To

A—0c0
. . . * .
do so, it will be useful to express the function ¢ ( - ) in
the following way,
,j;(v)ﬂ
., e Tl
N 2z
/ — = 2dH(2)
* . ©0.c) b Mp—q+2y—2)
L()\)i(p * 2) X A2 Jjt1
. z(;)
L dH
fm.m),,o.75(1’*(1+2y*2) (&)
. 672%(‘/\_2)”1 -
fz % y 2dH(z)
— (p—g—2) L 02)i=0 J: p—q+2y—4
e X2t
&
¢ 2 2j
: - 1H(
/m.,,,),;» g p—qt2y—4 @)

A>0.

Moreover, we can write

N
{ & eiﬁ(g)J 2j
lim f — 2L Y LiH()
Ao W (g m; i p—qt2y—4

lime (\) =(p—q—2)
A—oo

[ 67 g(ﬁ)l }
. & ¢ e 2j
PE /m.w),Zl 7 p—q+2y—4 dHz)
if both limits exist and the denominator is not equal to
zero. By the dominated converge theorem, we can then
write lime (A ) as

A—00

N 2L,
Sy ime | e () )

i 2L,
/( hmEﬂmlu,z.»(é)}dH(z)

0, 00) A0

(p—q—2)

where, for z > 0, L, is a Poisson random variable with
mean A/ 2z. Finally by noting that,

V2 >0, lime"

A— 00

ZLZ
Sograr —ile L) =
because the integrand tends 2L (p—q+2L —4)"!
tends to one when L, — co we obtain

/ 2dH(z)

lime (A) = (p—q—2) 0, )
Asoo .

= (p—q—2)E(Z)

Having evaluated the quantities ¢ [0,c0] and

¢ [0, 0], and Theorem 3.1 yields the following result.

Corollary 3.6. Let « be a single observation from a p
-dimensional location parameter family with p.d.f. of the
form given by expression (2.1). with p—¢ > 3, and
under the assumption § € R? and E[Z] < oo,

(a) the subclass

(D! p—q=2)E ' [Z7'] < c< (p—q—2)E[Z]}
is a minimal complete class D;;,, forp—q > 4,

(b) the decision rule & will dominate the decision rule
Rifo<e<2p—q—2)E 7.

Proof. These results above are a direct application of
Theorem 3.1 and 3.5. We pursue with some remarks.

Remark 3.1. Under the conditions of Corollary 3.6, the
decision rule & is a minimax rule if and only if
0<c¢<2(p—¢g—2)E '[Z']. This condition can
also be obtained using part (2) of Theorem 3.5 and similar
to last part in Section 2 which, under the same
conditions, would specify that

RO,F)<p & 0=c=2(|0-P4]).

It is interesting to note that the natural estimator &°
represents the only minimax rule within the class D,;,,
when the quantity £{Z~ 11 does not exist.

Remark 3.2. The results above of Theorem 3.1 and
Corollary 3.6 can be extended to the case where the
experimental information consist of a sample
X, -, X, with p.d.f. of the form in (2.1) and the class
of decision rules considered consists of the decision
rules of the form

where X is the sample mean and P, is an idempotent
and projection matrix. This can be seen by nothing that
the probability law of sample mean X = n ' Z X ;
i=1
X, -+, X, being n independently and identically
distributed random vectors admitting the representations.
for all values z, ---,z, of n independent copies
Zy, -+, Z, of a positive random variable Z ; admits the
representation
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LZV 2 =2,,2 =z) :Np(o,ni?Elz]Jp),or
=

LX| W=w) :NP(O,w[p), Yw >0

where TV is a random variable such that
L(W) = L(n ) Z). (32)
j=1 "

Thus the optimal estimator of the Lindley type is; with
the conditions § €8, , E{Z] < co, p—q > 3 ; given
by expression (2.4), and is equal to

&N = p X+ [1— () ]

(X—P,X) (X-P,X)
(X—P,X)

where

H, ( - ) representing the c.d.f. of the random variable

W defined by expression (3.2). Furthermore, the result
specifying a minimal complete class within the class

D./S

= {& CRPSR T E(X) = PX+
C

(1— _c_ )(}— PV?()}
(X — PVX) (X — PVX)

as well as the result giving a subclass of Lindley type
rues that dominate the sample mean 6° (X') = X and be
applied to the case where the experimental information
consists of a sample. In particular, by rewriting Corollary
3.6, we obtain the following result. Part (b) of this
corollary has been proved by Bravo and MacGibbon!'”
under a more general setting.

Corollary 3.7. Let X, , --- , X, be a sample generated
by a common random vector X which admits the
representation given by expression (2.1). Under the
conditions § € R”, p—q = 3 and E[Z] < o
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(a) for p—q = 4, the subclass

is a minimal complete class with the class D, and
(b) the decision rule & will dominate the sample mean

n -1
if ()<c<2ni2(p—q—2)Eﬁl[(ZZi) } (3.3)

i=1

Proof. These results are a direct application of
Corollary 3.6 and the discussion above expression (3.2).

However, the results concerning the minimax criteria
given by Strawerman cannot be applied to the decision
rules &°(z) since the statistic X does not represent in
general a sufficient statistic(the multinormal case being a
well known exception). Finally it is interesting to note
that,

g ) } < E[iZl] =7LE[Z],

i=1

(the above inequality can be seen us a consequence of
Lemma 3.2), implying that the interval

— & as n—> oo

n -1
(0, 27171(])7q72)E”1 [(ZZL) }
i=1
which, by expression (3.3), indicates that the subclass of
Lindley type decision rules dominating the sample mean
can be made arbitrarily small by increasing the sample
size n .
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