Isotomic and Isogonal Conjugates Tangent Lines of Lines at Vertices of Triangle

Min Young Seo ${ }^{1}$ and Young Joon Ahn ${ }^{2+}$

Abstract

In this paper we consider the two tangent lines of isogonal and isotomic conjugates of the line at both vertices of a given triangle. We find the necessary and sufficient condition for the two tangent lines of isogonal or isotomic conjugates of the line at both vertices and the median line to be concurrent. We also prove that every line whose isogonal conjugate tangent lines at both vertices are concurrent with the median line intersects at a unique point. Moreover, we show that the three intersection points correspond to the vertices of triangle are collinear.

Keywords: Barycentric Coordinates, Isotomic Conjugate, Isogonal Conjugate, Tangent Line, Ceva's Theorem, Concurrency of Three Lines

1. Introduction

The barycentric coordinates with respect to a triangle are widely used in CAGD(Computer Aided Geometric Design) as well as in Euclidean Geometry. In particular, the use of barycentric coordinates has played an important rule in a lot of methods for the conic representation and conic approximation ${ }^{[1-6]}$. In Euclidean Plane Geometry, so many works have been done based on the use of them ${ }^{[1,7-11]}$.

Recently, Akopyan ${ }^{[12]}$ presented the properties of the tangency of isotomically and isogonally conjugate lines of some special lines with respect to a triangle. Yoon and Ahn ${ }^{[13]}$ showed that the isogonal and isotomic conjugates of conic tangent to two side lines at vertices are again conic tangent to the two side lines at vertices and classified them into ellipses, parabolas and hyperbolas using the barycentric coordinates.

In this paper we study the two tangent lines of isogonal and isotomic conjugates of the line L at both vertices B, C of the reference triangle $\triangle A B C$. We find the necessary and sufficient condition for the two tangent

[^0]lines of isogonal or isotomic conjugates of the line at both vertices and a median line $A M_{A}$ to be concurrent, where M_{A} is the midpoint of side line $B C$. We also prove that all lines whose isogonal conjugate tangent lines at both vertices are concurrent with the median line $A M_{A}$ intersect at a unique point X_{A}. Moreover we show that the three intersection points X_{A}, X_{B}, X_{C} are collinear. All of our results are based on the barycentric coordinates.
I suggest that The contents of our paper are organized as follows. In Section 2, the basic facts in elementary plane geometry are provided, and in Section 3, our main results are presented. The results in the first half of Section 3 improves of the MS Thesis of the first author of this paper ${ }^{[14]}$.

2. Preliminaries for Elementary Plane Geometry

In this section we remind the definitions of barycentric coordinates, homogeneous barycentric coordinates, isotomic conjugate, and isogonal conjugate ${ }^{[4,10,13,15,16]}$.

Every point P in a reference triangle $\triangle A B C$ satisfies

$$
\begin{equation*}
\overrightarrow{O P}=\frac{1}{\triangle A B C}(\triangle B C P \cdot \overrightarrow{O A}+\triangle C A P \cdot \overrightarrow{O B}+\triangle A B P \cdot \overrightarrow{O C}) \tag{2.1}
\end{equation*}
$$

where O is the origin on the plane containing the triangle and $\triangle X Y Z$ is the area of triangle $\triangle X Y Z^{[10,15]}$. In Eq. (2.1), the ordered triple

$$
\left(\frac{\triangle B C P}{\triangle A B C}, \frac{\triangle C A P}{\triangle A B C}, \frac{\triangle A B P}{\triangle A B C}\right)
$$

is called by the barycentric coordinates of P with resect to $\triangle A B C$. If $\left(\tau_{0}, \tau_{1}, \tau_{2}\right)$ is the barycentric coordinates of P, its positive scalar multiplication

$$
\left(k \tau_{0}: k \tau_{1}: k \tau_{2}\right)
$$

is called by the homogeneous barycentric coordinates of P with resect to $\triangle A B C$. The definition of barycentric coordinates can be extended to all points on the plane from $\triangle A B C$ as follows ${ }^{[4]}$. For every point P on the plane, $\overrightarrow{O P}$ is uniquely expressed by

$$
\begin{aligned}
& \overrightarrow{O P}=\tau_{0} \overrightarrow{O A}+\tau_{1} \overrightarrow{O B}+\tau_{2} \overrightarrow{O C} \\
& \tau_{0}+\tau_{1}+\tau_{2}=1 .
\end{aligned}
$$

At this time, $\left(\tau_{0}, \tau_{1}, \tau_{2}\right)$ is called by the barycentric coordinates of P. The relationship between the signatures of barycentric coordinates and the position of P outside of $\triangle A B C$ is well-known ${ }^{[13,17]}$.

The midpoints of the side lines $B C, C A, A B$ are denoted by M_{A}, M_{B}, M_{C}, respectively. For the point P inside the triangle $\triangle A B C$, let the points P_{A}, P_{B}, P_{C} be the intersection points of the lines $A P, B P, C P$ and side lines $B C, C A, A B$, respectively, and let $P_{A}^{\circ}, P_{B}^{\circ}, P_{C}^{\circ}$ be the symmetric point of P_{A}, P_{B}, P_{C} with respect to M_{A}, M_{B}, M_{C}, respectively. Then the three lines $A P_{A}^{\circ}, B P_{B}^{\circ}$, $C P_{C}^{\circ}$ are concurrent at a point, which is called by the isotomic conjugate of P and denoted by P°. It is also well-known ${ }^{[10,15,16]}$ that P satisfies
$\triangle B C P: \triangle C A P: \triangle A B P=\frac{1}{\triangle B C P^{\circ}}: \frac{1}{\triangle C A P^{\circ}}: \frac{1}{\triangle A B P^{\circ}}$
and its homogeneous barycentric coordinates is ($\frac{1}{\tau_{0}}: \frac{1}{\tau_{1}}: \frac{1}{\tau_{2}}$).

The angle bisectors at the vertices A, B, C of $\triangle A B C$ are denoted by L_{A}, L_{B}, L_{C}, respectively, which are concurrent at the incenter of $\triangle A B C$. For the point P inside the triangle $\triangle A B C$, let the lines $L_{A}^{*}, L_{B}^{*}, L_{C}^{*}$ be the
symmetric lines of the lines $A P, B P, C P$ with respect to L_{A}, L_{B}, L_{C}, respectively. The three lines $L_{A}^{*}, L_{B}^{*}, L_{C}^{*}$ are concurrent at a point, which is called by the isogonal conjugate of P and denoted by P^{*}. It is also well-known ${ }^{[10,15,16]}$ that
$\triangle B C P: \triangle C A P: \triangle A B P=\frac{a^{2}}{\triangle B C P^{\circ}}: \frac{b^{2}}{\triangle C A P^{\circ}}: \frac{c^{2}}{\triangle A B P^{\circ}}$
and P^{*} has the homogeneous barycentric coordinates $\left(\frac{a^{2}}{\tau_{0}}: \frac{b^{2}}{\tau_{1}}: \frac{c^{2}}{\tau_{2}}\right)$.
Ceva's theorem ${ }^{[14]}$ will be use to prove our main theorems.

Theorem 2.1 (Ceva's Theorem)

Let the points X, Y, Z be on the side lines $B C, C A, A B$ of a triangle $\triangle A B C$, respectively. The lines $A X, B Y, C Z$ are concurrent if and only if

$$
\frac{A Z}{Z B} \cdot \frac{B X}{X C} \cdot \frac{C Y}{Y A}=1
$$

3. Tangent Lines of Isotomic and Isogonal Conjugates of Line at Vertices of Triangle

In this section, we consider a line L which intersects the side lines $A B$ and $A C$ of a reference triangle $\triangle A B C$ at two points D, E, respectively.

Theorem 3.1

The two tangent lines of the isotomic conjugate curve of L at the vertices B, C, and the median line $A M_{A}$ are concurrent if and only if the line L is parallel to the side line $B C$.

Proof.

Let $p_{0}=\overrightarrow{O A}, p_{1}=\overrightarrow{O B}, p_{2}=\overrightarrow{O C}$. There are real numbers $\delta_{1}, \delta_{2} \in(0,1)$ such that

$$
\begin{aligned}
& \overrightarrow{O D}=\left(1-\delta_{1}\right) \overrightarrow{O A}+\delta_{1} \overrightarrow{O B} \\
& \overrightarrow{O E}=\left(1-\delta_{2}\right) \overrightarrow{O A}+\delta_{2} \overrightarrow{O C} .
\end{aligned}
$$

The line L has the parametric equation

$$
\begin{equation*}
r(t)=\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right) p_{0}+(1-t) \delta_{1} p_{1}+t \delta_{2} p_{2} \tag{3.1}
\end{equation*}
$$

and the homogeneous barycentric coordinates

$$
\begin{equation*}
\left(\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right):(1-t) \delta_{1}: t \delta_{2}\right) \tag{3.2}
\end{equation*}
$$

So, the isotomic conjugate curve $r^{\circ}(t)$ has the homogeneous barycentric coordinates

$$
\left(\frac{1}{\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right)}: \frac{1}{(1-t) \delta_{1}}: \frac{1}{t \delta_{2}}\right)
$$

and the parametric equation of $r^{\circ}(t)$ is

$$
\begin{aligned}
r^{\circ}(t) & =\left[(1-t) \delta_{1} t \delta_{2} p_{0}+\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right) t \delta_{2} p_{1}\right. \\
& \left.+\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right)(1-t) \delta_{1} p_{2}\right] / w(t)
\end{aligned}
$$

where

$$
\begin{aligned}
w(t) & =(1-t) \delta_{1} t \delta_{2}+\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right) t \delta_{2} \\
& +\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right)(1-t) \delta_{1}
\end{aligned}
$$

Note that $r^{\circ}(t)$ is passing through the points C, B when $t=0,1$, respectively. For $i=0,1$, let T_{i} be the tangent line of $r^{\circ}(t)$ at $t=i$, and let F, G be the intersection points of T_{0} and $A B, T_{1}$ and $A C$, respectively. Since

$$
\begin{aligned}
r^{\circ}(0) & =\frac{\delta_{2}}{\left(1-\delta_{1}\right) \delta_{1}}\left(\delta_{1} p_{0}+\left(1-\delta_{1}\right) p_{1}-p_{2}\right) \\
r^{\circ^{\prime}}(1) & =\frac{-\delta_{1}}{\left(1-\delta_{2}\right) \delta_{2}}\left(\delta_{2} p_{0}-p_{1}+\left(1-\delta_{2}\right) p_{2}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& A F: F B=1-\delta_{1}: \delta_{1} \\
& A G: G C=1-\delta_{2}: \delta_{2}
\end{aligned}
$$

By Ceva's Theorem, the three lines, $A M_{A}, T_{0}$, and T_{1} are concurrent if and only if

$$
\frac{A F}{F B} \cdot \frac{B M_{A}}{M_{A} C} \cdot \frac{C G}{G A}=1
$$

Since

$$
\frac{A F}{F B} \cdot \frac{B M_{A}}{M_{A} C} \cdot \frac{C G}{G A}=\frac{1-\delta_{1}}{\delta_{1}} \cdot \frac{\delta_{2}}{1-\delta_{2}}=1
$$

is equivalent to $\delta_{1}=\delta_{2}$, the two tangent lines T_{0}, T_{1}, and

Fig. 1. Isotomic conjugate for $\delta_{1}=\delta_{2}=0.55$

Fig. 2. Isotomic conjugate for $\delta_{1}=0.4, \delta_{2}=0.55$
the median line $A M_{A}$ are concurrent if and only if the line L is parallel to the side line $B C$.

Figs. 1-2 illustrate Theorem 3.1. In Figs. 1-5, $a=10, b=\sqrt{50}$ and $c=\sqrt{130}$. In the case that the line L (orange color) and the side line $B C$ are parallel, the two tangent lines T_{0}, T_{1} (blue line) of the isotomic conjugate curve $r^{\circ}(t)$ (magenta color) at vertices C, B, and the median line $A M_{A}$ (green color) are concurrent, as shown in Fig. 1. If the line L and the side line $B C$ are not parallel, then T_{0}, T_{1}, and $A M_{A}$ are not concurrent, as shown in Fig. 2.

Theorem 3.2

The two tangent lines of the isogonal conjugate curve of the line $D E$ at the vertices B, C of triangle $\triangle A B C$, and the median line $A M_{A}$ are concurrent if and only if the line $D E$ satisfies

$$
\begin{equation*}
\frac{b^{2} D B}{A D}=\frac{c^{2} E C}{A E} \tag{3.3}
\end{equation*}
$$

Proof.

By Eqs. (3.1)-(3.2), the isogonal conjugate curve $r^{*}(t)$ of the line L has the homogeneous barycentric coordinates

$$
\left(\frac{a^{2}}{1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)}: \frac{b^{2}}{(1-t) \delta_{1}}: \frac{c^{2}}{t \delta_{2}}\right)
$$

and the parametric equation of $r^{*}(t)$ is

$$
\begin{aligned}
r^{*}(t) & =\left[a^{2}(1-t) \delta_{1} t \delta_{2} p_{0}+b^{2}\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right) t \delta_{2} p_{1}\right. \\
& \left.+c^{2}\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right)(1-t) \delta_{1} p_{2}\right] / w^{*}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
w^{*}(t) & =a^{2}(1-t) \delta_{1} t \delta_{2}+b^{2}\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right) t \delta_{2} \\
& +c^{2}\left(1-\delta_{1}+t\left(\delta_{1}-\delta_{2}\right)\right)(1-t) \delta_{1}
\end{aligned}
$$

For $i=0,1$, let T_{i}^{*} be the tangent line of $r^{*}(t)$ at $t=0,1$, and let F, G be the intersection points of $T_{0}{ }^{*}$ and $\overline{A B}, T_{1}{ }^{*}$ and $\overline{A C}$, respectively. Since

$$
\begin{aligned}
& r^{*^{\prime}}(0)=\frac{\delta_{2}}{c^{2}\left(1-\delta_{1}\right) \delta_{1}} \\
& \left(a^{2} \delta_{1} p_{0}+b^{2}\left(1-\delta_{1}\right) p_{1}-\left(a^{2} \delta_{1}+b^{2}\left(1-\delta_{1}\right)\right) p_{2}\right) \\
& r^{*^{\prime}}(1)=\frac{-\delta_{1}}{b^{2}\left(1-\delta_{2}\right) \delta_{2}} \\
& \left(a^{2} \delta_{2} p_{0}-\left(a^{2} \delta_{2}+c^{2}\left(1-\delta_{2}\right)\right) p_{1}+c^{2}\left(1-\delta_{2}\right) p_{2}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& A F: F B=b^{2}\left(1-\delta_{1}\right): a^{2} \delta_{1} \\
& A G: G C=c^{2}\left(1-\delta_{2}\right): a^{2} \delta_{2} .
\end{aligned}
$$

Since

$$
\frac{A F}{F B} \cdot \frac{B M_{A}}{M_{A} C} \cdot \frac{C G}{G A}=\frac{b^{2}\left(1-\delta_{1}\right)}{\delta_{1}} \cdot \frac{\delta_{2}}{c^{2}\left(1-\delta_{2}\right)},
$$

the two tangent lines $T_{0}{ }^{*}, T_{1}{ }^{*}$, and the median line $A M_{A}$ are concurrent if and only if the line $D E$ satisfies

Fig. 3. Isogonal conjugate for $\delta_{1}=\frac{1}{2}, \delta_{1}=\frac{13}{18}$.

Fig. 4. Isogonal conjugate for $\delta_{1}=\delta_{2}=0.6$.

$$
\frac{b^{2} D B}{A D}=\frac{c^{2} E C}{A E}
$$

Figs. 3-4 illustrate Theorem 3.2. In Fig. 3, $\delta_{1}=\frac{1}{2}, \delta_{2}=\frac{13}{18}$ and it shows that if the line L (orange color) passes through D, E satisfying Eq. (3.3), then the two tangent lines T_{0}^{*}, T_{1}^{*} (blue line) of the isogonal conjugate curve $r^{*}(t)$ (magenta color) of the line L at vertices B, C, and the median line $A M_{A}$ are concurrent. Fig. 4 shows that if the line L does not satisfy Eq. (3.3), then T_{0}^{*}, T_{1}^{*}, and $A M_{A}$ are not concurrent.

Definition 3.3

The tangent lines of isogonal conjugate curve of the line L at B, C are called by the isogonal conjugate tangent line of L at B, C, respectively.

Theorem 3.4

All lines whose isogonal conjugate tangent lines at B, C are concurrent with the median line $A M_{A}$ intersect at a unique point X_{A} which is the externally dividing point of B, C in the ratio of $c^{2}: b^{2}$, i.e.,

$$
X_{A}= \begin{cases}\frac{b^{2} \cdot B-c^{2} \cdot C}{b^{2}-c^{2}} & (b \neq c) \tag{3.4}\\ \infty & (b=c) .\end{cases}
$$

proof.

If $b=c$, then the assertion is clearly true. If $b \neq c$, then, by Eq. (3.4),

$$
\begin{aligned}
& \overrightarrow{D X_{A}}=-\frac{D B}{A B} \overrightarrow{O A}+\left(\frac{b^{2}}{b^{2}-c^{2}}-\frac{A D}{A B}\right) \overrightarrow{O B}-\frac{c^{2}}{b^{2}-c^{2}} \overrightarrow{O C} \\
& \overrightarrow{E X_{A}}=-\frac{E C}{A C} \overrightarrow{O A}+\frac{b^{2}}{b^{2}-c^{2}} \overrightarrow{O B}+\left(-\frac{c^{2}}{b^{2}-c^{2}}-\frac{A E}{A C}\right) \overrightarrow{O C}
\end{aligned}
$$

and by Eq. (3.3),

$$
\begin{aligned}
\overrightarrow{D X_{A}}= & -\frac{D B}{A B} \overrightarrow{O A}+\frac{c^{2} \cdot A C \cdot D A}{\left(b^{2}-c^{2}\right) \cdot A B \cdot E A} \overrightarrow{O B} \\
& -\frac{c^{2}}{b^{2}-c^{2}} \overrightarrow{O C}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{E X_{A}}= & -\frac{E C}{A C} \overrightarrow{O A}+\frac{b^{2}}{b^{2}-c^{2}} \overrightarrow{O B} \\
& -\frac{b^{2} \cdot A E \cdot A B}{\left(b^{2}-c^{2}\right) \cdot A C \cdot A D} \overrightarrow{O C}
\end{aligned}
$$

Thus we have $\overrightarrow{D X_{A}}=\frac{c^{2} \cdot A C \cdot A D}{b^{2} \cdot A B \cdot A E} \overrightarrow{E X_{A}}$, and so, all lines passing through D, E intersect at the point X_{A}. Since the slopes of all lines are different mutually, the intersection point X_{A} is unique.

Similarly as X_{A} denotes the unique intersection point in Theorem 3.3, we define the point X_{B} (or X_{C}) by the unique intersection point of all lines whose isogonal conjugate tangent lines at C, A (or A, B) concurrent with the median line $B M_{B}$ (or $C M_{C}$). Then X_{B} and X_{C} are the externally dividing point of C, A in the ratio of $a^{2}: c^{2}$, and of A, B in the ratio of $b^{2}: a^{2}$, respectively.

Theorem 3.5

The three points X_{A}, X_{B}, X_{C} are collinear.

Fig. 5. Lines satisfying Eq. (3.3).

Fig. 6. The collinearity of three points.

proof.

If $\triangle A B C$ is a isosceles triangle, then at least one of three points X_{A}, X_{B}, X_{C} is the infinite point. Thus the three points are trivially collinear. Otherwise,

$$
\begin{aligned}
& X_{A}=\frac{b^{2} \cdot B-c^{2} \cdot C}{b^{2}-c^{2}} \\
& X_{B}=\frac{a^{2} \cdot A-c^{2} \cdot C}{a^{2}-c^{2}} \\
& X_{C}=\frac{a^{2} \cdot A-b^{2} \cdot B}{a^{2}-b^{2}}
\end{aligned}
$$

yeld that

$$
\begin{aligned}
& \overrightarrow{X_{A} X_{B}}=\frac{a^{2}}{a^{2}-c^{2}} A-\frac{b^{2}}{b^{2}-c^{2}} B+\frac{c^{2}\left(a^{2}-b^{2}\right)}{\left(b^{2}-c^{2}\right)\left(a^{2}-c^{2}\right)} C \\
& \overrightarrow{X_{B} X_{C}}=\frac{a^{2}\left(b^{2}-c^{2}\right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)} A-\frac{b^{2}}{a^{2}-b^{2}} B-\frac{c^{2}}{a^{2}-c^{2}} C
\end{aligned}
$$

Thus we have $\overrightarrow{X_{A} X_{B}}=\frac{a^{2}-b^{2}}{b^{2}-c^{2}} \overrightarrow{X_{B} X_{C}}$, and so, the three points X_{A}, X_{B}, X_{C} are collinear.

Fig. 6 illustrates Theorem 3.5. It shows that the three points X_{A}, X_{B}, X_{C} are collinear for the triangle $A B C$ with $a=10, b=\sqrt{18}, c=\sqrt{58}$.

Acknowledgement

This study was supported by research funds from Chosun University, 2016.

References

[1] A. Cantón, L. Fernández-Jambrina, and E. R. María. "eometric characteristics of conics in Bézier form", Comput. Aided Design, Vol. 43, pp. 1413-1421, 2011.
[2] L. Fang, " 3 approximation of conic sections by quintic polynomial curves", Comput. Aided Geom. D., Vol. 16, pp. 755-766, 1999.
[3] R. T. Farouki, "onic approximation of conic offsets", Lancet Infect. Dis., Vol. 23, pp. 301-313, 1997.
[4] M. S. Floater, "An $O\left(h^{2 n}\right)$ Hermite approximation for conic sections", Comput. Aided Geom. D., Vol. 14, pp. 135-151, 1997.
[5] H. Y. Park and Y. J. Ahn, "Isoparametric curve of quadratic F-Bézier curve", J. Chosun Natural Sci., Vol. 6, pp. 46-52, 2013.
[6] G. J. Wang and G. Z. Wang, "The rational cubic Bézier representation of conics", Comput. Aided Geom. D., Vol. 9, pp. 447-455, 1992.
[7] M. Dalcín, "Isotomic inscribed triangles and their residuals", Forum Geometricorum, Vol. 3, pp. 125-134, 2003.
[8] A. P. Hatzipolakis, F. van Lamoen, B. Wolk, and P. Yiu, "Concurrency of four Euler lines", Forum Geometricorum, Vol. 1, pp. 59-68, 2001.
[9] K. R. S. Sastry, "Triangles with special isotomic conjugate pairs", Forum Geometricorum, Vol. 4, pp. 73-80, 2004.
[10] P. Yiu, "The uses of homogeneous barycentric coordinates in plane Euclidean geometry", International Journal of Mathematical Education in Science and Technology, Vol. 31, pp. 569-578, 2000.
[11] K. Dean and F. van Lamoen, "Geometric construction of reciprocal conjugation", Forum Geometricorum, Vol. 1, pp. 115-120, 2001.
[12] A. V. Akopyan, "Conjugation of lines with respect to a triangle", Journal of Classical Geometry, Vol. 1, pp. 23-31, 2012.
[13] P. Yiu, "Conic construction of a triangle from the feet of its angle bisectors", Journal for Geometry and Graphics, Vol. 12, pp. 171-182, 2008.
[14] M. Y. Seo, "Tangent line of isotomic conjugate", MS diss., Chosun University, 2016.
[15] P. Yiu, "Introduction to the geometry of the triangle", 2001.
[16] C. R. Yun and Y. J. Ahn, "Isogonal and isotomic conjugates of quadratic rational Bézier curves", Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, Vol. 22, pp. 25-34, 2015.
[17] R. Lee and Y. J. Ahn, "Geometric shape analysis for convolution curve of two compatible quadratic Bezier curves", J. Comput. Appl. Math., Vol. 288, pp. 141-150, 2015.

[^0]: ${ }^{1}$ Graduate school of Education, and ${ }^{2}$ Department of Mathematics Education, Chosun University, Gwangju, Korea
 ${ }^{\dagger}$ Corresponding author : ahn@chosun.ac.kr
 (Received: February 8, 2017, Revised : March 16, 2017
 Accepted: March 25, 2017)

