DOI QR코드

DOI QR Code

Natural Compounds as Inhibitors of Plasmodium Falciparum Enoyl-acyl Carrier Protein Reductase (PfENR): An In silico Study

  • Narayanaswamy, Radhakrishnan (Laboratory of Natural Products, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM)) ;
  • Wai, Lam Kok (Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM)) ;
  • Ismail, Intan Safinar (Laboratory of Natural Products, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM))
  • 투고 : 2016.11.21
  • 심사 : 2017.03.25
  • 발행 : 2017.03.30

초록

Demand for a new anti-malarial drug has been dramatically increasing in the recent years. Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) plays a vital role in fatty acid elongation process, which now emerged as a new important target for the development of anti-microbial and anti-parasitic molecules. In the present study, 19 compounds namely alginic acid, atropine, chlorogenic acid, chrotacumine A & B, coenzyme $Q_1$, 4-coumaric acid, curcumin, ellagic acid, embelin, 5-O-methyl embelin, eugenyl glucoside, glabridin, hyoscyamine, nordihydroguaiaretic acid, rohitukine, scopolamine, tlatlancuayin and ursolic acid were evaluated on their docking behaviour on P. falciparum enoyl-acyl carrier protein reductase (PfENR) using Auto dock 4.2. The docking studies and binding free energy calculations exhibited that glabridin gave the highest binding energy (-8.07 kcal/mol) and 4-coumaric acid in contrast showed the least binding energy (-4.83 kcal/mol). All ligands except alginic acid, ellagic acid, hyoscyamine and glabridin interacted with Gln409 amino acid residue. Interestingly four ligands namely coenzyme $Q_1$, 4-coumaric acid, embelin and 5-O-methyl embelin interacted with Gln409 amino acid residue present in both chains (A & B) of PfENR protein. Thus, the results of this present study exhibited the potential of these 19 ligands as P. falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitory agents and also as anti-malarial agents.

키워드

참고문헌

  1. R. Yusof, Y. L. Lau, R. Mahmud, M. Y. Fong, J. Jelip, H. U. Ngian, S. Mustakim, H. M. Hussin, N. Marzuki and M. M. Ali, "High proportion of knowlesi malaria in recent malaria cases in Malaysia", Malar. J., Vol. 13, pp. 168, 2014. https://doi.org/10.1186/1475-2875-13-168
  2. T. William and J. Menon, "A review of malaria research in Malaysia", Med. J. Malaysia, Vol. 69, pp. 82-87, 2014.
  3. D. A. Fidock, P. J. Rosenthal, S. L. Croft, R. Brun and S. Nwaka, "Antimalarial drug discovery: efficacy models for compound screening", Nat. Rev. Drug Discov., Vol. 3, pp. 509-520, 2004. https://doi.org/10.1038/nrd1416
  4. H. Kirmizibekmez, I. Calis, R. Perozzo, R. Brun, A. A. Donmez, A. Linden, P. Ruedi and D. Tasdemir, "Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis", Planta Med., Vol. 70, pp. 711-717, 2004. https://doi.org/10.1055/s-2004-827200
  5. N. Kapoor, T. Banerjee, P. Babu, K. Maity, N. Surolia and A. Surolia, "Design, development, synthesis, and docking analysis of 2′-substituted triclosan analogs as inhibitors for Plasmodium falciparum Enoyl-ACP reductase", IUBMB Life, Vol. 61, pp. 1083-1091, 2009. https://doi.org/10.1002/iub.258
  6. N. Radhakrishnan, A. Gnanamani, S. Sangeetha, G. Rameshkumar and A. B. Mandal, "Bioinformatics in crosslinking chemistry of collagen with selective cross linkers", BMC Res. Notes, Vol. 4, pp. 399, 2011. https://doi.org/10.1186/1756-0500-4-399
  7. L. Cui, J. Miao and L. Cui, "Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species", Antimicrob. Agents Chemother., Vol. 51, pp. 488-494, 2007. https://doi.org/10.1128/AAC.01238-06
  8. S. Tagboto and S. Townson, "Antiparasitic properties of medicinal plants and other naturally occurring products", Adv. Parasitol., Vol. 50, pp. 199295, 2001.
  9. P. Rasoanaivo, C. W. Wright, M. L. Willcox and B. Gilbert, "Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions", Malar. J., Vol. 10, pp. S4, 2011. https://doi.org/10.1186/1475-2875-10-S1-S4
  10. P. N. Mimche, D. Taramelli and L. Vivas, "The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria", Malar. J., Vol. 10, pp. S10, 2011. https://doi.org/10.1186/1475-2875-10-S1-S10
  11. R. Chakrabarti, P. S. Rawat, B. M. Cooke, R. L. Coppel and S. Patankar, "Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules", PLoS One, Vol. 8, pp. e57302, 2013. https://doi.org/10.1371/journal.pone.0057302
  12. J. C. P. Steele, D. C. Warhurst, G. C. Kirby and M. S. J. Simmonds, "In vitro and in vivo evaluation of betulinic acid as an antimalarial", Phytother. Res., Vol. 13, pp. 115-119, 1999. https://doi.org/10.1002/(SICI)1099-1573(199903)13:2<115::AID-PTR404>3.0.CO;2-1
  13. C. van Baren, I. Anao, P. Di Leo Lira, S. Debenedetti, P. Houghton, S. Croft and V. Martino, "Triterpenic acids and flavonoids from Satureja parvifolia, evaluation of their antiprotozoal activity", Z. Naturforsch, Vol. 61, pp. 189, 2006.
  14. N. Mahmoudi, R. Garcia-Domenech, J. Galvez, K. Farhati, J. F. Franetich, R. Sauerwein, L. Hannoun, F. Derouin, M. Danis and D. Mazier, "New active drugs against liver stages of Plasmodium predicted by molecular topology", Antimicrob. Agents Chemother., Vol. 52, pp. 1215-1220, 2008. https://doi.org/10.1128/AAC.01043-07
  15. P. N. Soh, B. Witkowski, D. Olagnier, M. L. Nicolau, M. C. Garcia-Alvarez, A. Berry and F. BenoitVical, "In vitro and in vivo properties of ellagic acid in malaria treatment", Antimicrob. Agents Chemother., Vol. 53, pp. 1100-1106, 2009. https://doi.org/10.1128/AAC.01175-08
  16. L. Lagnika, B. Weniger, C. Senecheau and A. Sanni, "Antiprotozoal activities of compounds isolated from Croton lobatus L", Afr. J. Infect. Dis., Vol. 3, pp. 1-5, 2009.
  17. Y. S. Biradar, "Evaluation of antimalarial activity of selected plants of Indian systems of medicine and study the synergistic activity of the compounds present therein", Ph.D Thesis, Bharati Vidyapeeth Deemed University, Pune, 2010.
  18. R. Das, D. Gogoi, S. Saikia, S. Bhoumic, R. L. Bezbaruah and R. N. S. Yadav, "Comparative modeling of Plasmodium falciparum Dihydropteroate Synthase 2 and docking study against compounds from anti-malarial plant Carcia papaya and Swertia chirata", Internat. J. Pharma., Vol. 4, pp. 213-218, 2014.
  19. H. S. Cheema, O. Prakash, A. Pal, F. Khan, D. U. Bawankule and M. P. Darokar, "Glabridin induces oxidative stress mediated apoptosis like cell death of malaria parasite Plasmodium falciparum", Parasitol. Internat., Vol. 63, pp. 349-358, 2014. https://doi.org/10.1016/j.parint.2013.12.005