DOI QR코드

DOI QR Code

Pharyngeal airway dimensions in skeletal class II: A cephalometric growth study

  • Uslu-Akcam, Ozge (Clinic of Orthodontics, Ministry of Health, Tepebasi Oral and Dental Health Hospital)
  • Received : 2016.09.02
  • Accepted : 2016.12.05
  • Published : 2017.03.31

Abstract

Purpose: This retrospective study aimed to evaluate the nasopharyngeal and oropharyngeal dimensions of individuals with skeletal class II, division 1 and division 2 patterns during the pre-peak, peak, and post-peak growth periods for comparison with a skeletal class I control group. Materials and Methods: Totally 124 lateral cephalograms (47 for skeletal class I; 45 for skeletal class II, division 1; and 32 for skeletal class II, division 2) in pre-peak, peak, and post-peak growth periods were selected from the department archives. Thirteen landmarks, 4 angular and 4 linear measurements, and 4 proportional calculations were obtained. The ANOVA and Duncan test were applied to compare the differences among the study groups during the growth periods. Results: Statistically significant differences were found between the skeletal class II, division 2 group and other groups for the gonion-gnathion/sella-nasion angle. The sella-nasion-B-point angle was different among the groups, while the A-point-nasion-B-point angle was significantly different for all 3 groups. The nasopharyngeal airway space showed a statistically significant difference among the groups throughout the growth periods. The interaction among the growth periods and study groups was statistically significant regarding the upper oropharyngeal airway space measurement. The lower oropharyngeal airway space measurement showed a statistically significant difference among the groups, with the smallest dimension observed in the skeletal class II, division 2 group. Conclusion: The naso-oropharyngeal airway dimensions showed a statistically significant difference among the class II, division 1; class II, division 2; and class I groups during different growth periods.

Keywords

References

  1. McNamara JA. Influence of respiratory pattern on craniofacial growth. Angle Orthod 1981; 51: 269-300.
  2. Han S, Choi YJ, Chung CJ, Kim JY, Kim KH. Long-term pharyngeal airway changes after bionator treatment in adolescents with skeletal Class II malocclusions. Korean J Orthod 2014; 44: 13-9. https://doi.org/10.4041/kjod.2014.44.1.13
  3. Soni J, Shyagali TR, Bhayya DP, Shah R. Evaluation of pharyngeal space in different combinations of Class II skeletal malocclusion. Acta Inform Med 2015; 23: 285-9. https://doi.org/10.5455/aim.2015.23.285-289
  4. Zinsly SR, Moraes LC, Moura P, Ursi W. Assessment of pharyngeal airway space using cone-beam computed tomograpy. Dental Press J Orthod 2010; 15: 150-8. https://doi.org/10.1590/S2176-94512010000500018
  5. Martin SE, Mathur R, Marshall I, Douglas NJ. The effect of age, sex, obesity and posture on upper airway size. Eur Respir J 1997; 10: 2087-90. https://doi.org/10.1183/09031936.97.10092087
  6. Tourne LP. Growth of the pharynx and its physiologic implications. Am J Orthod Dentofacial Orthop 1991; 99: 129-39. https://doi.org/10.1016/0889-5406(91)70115-D
  7. Johnston CD, Richardson A. Cephalometric changes in adult pharyngeal morphology. Eur J Orthod 1999; 21: 357-62. https://doi.org/10.1093/ejo/21.4.357
  8. Martin O, Muelas L, Vinas MJ. Nasopharyngeal cephalometric study of ideal occlusions. Am J Orthod Dentofacial Orthop 2006; 130: 436.e1-9.
  9. Spath-Schwalbe E, Hundenborn C, Kern W, Fehm HL, Born J. Nocturnal wakefulness inhibits growth hormone (GH)-releasing hormone-induced GH secretion. J Clin Endocrinol Metab 1995; 80: 214-9.
  10. Born J, Muth S, Fehm HL. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone (GH) and cortisol. Psychoneuroendocrinology 1988; 13: 233-43. https://doi.org/10.1016/0306-4530(88)90021-2
  11. Bollhalder J, Hanggi MP, Schatzle M, Markic G. Dentofacial and upper airway characteristics of mild and severe class II division 1 subjects. Eur J Orthod 2013; 35: 447-53. https://doi.org/10.1093/ejo/cjs010
  12. Battagel JM, Johal A, Kotecha B. A cephalometric comparison of subjects with snoring and obstructive sleep apnoea. Eur J Orthod 2000; 22: 353-65. https://doi.org/10.1093/ejo/22.4.353
  13. Lowe AA, Fleetham JA, Adachi S, Ryan CF. Cephalometric and computed tomographic predictors of obstructive sleep apnoea severity. Am J Orthod Dentofacial Orthop 1995; 107: 589-95. https://doi.org/10.1016/S0889-5406(95)70101-X
  14. Yavuz B, Kocadereli I. Sinif II malokluzyonlarda uygulanan tedavi yaklasimlarinin ust hava yolu uzerine etkileri. EU Dishek Fak Derg 2013; 34: 66-72.
  15. Coben SE. The biology of Class II treatment. Am J Orthod 1971; 59: 470-87. https://doi.org/10.1016/0002-9416(71)90083-2
  16. Souki BQ, Pimenta GB, Souki MQ, Franco LP, Becker HM, Pinto JA. Prevalence of malocclusion among mouth breathing children: do expectations meet reality? Int J Pediatr Otorhinolaryngol 2009; 73: 767-73. https://doi.org/10.1016/j.ijporl.2009.02.006
  17. Agren K, Nordlander B, Linder-Aronsson S, Zettergren-Wijk L, Svanborg E. Children with nocturnal upper airway obstruction: postoperative orthodontic and respiratory improvement. Acta Otolaryngol 1998; 118: 581-7. https://doi.org/10.1080/00016489850154766
  18. Kim YJ, Hong JS, Hwang YI, Park YH. Three-dimensional analysis of pharyngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofacial Orthop 2010; 137: 306.e1-11. https://doi.org/10.1016/j.ajodo.2009.10.026
  19. Gungor OE, Celikoglu M, Kale B, Gungor AY, Sari Z. The reliability of the Greulich and Pyle atlas when applied to a Southern Turkish population. Eur J Dent 2015; 9: 251-4. https://doi.org/10.4103/1305-7456.156846
  20. Jakhi SA, Karjodkar FR. Use of cephalometry in diagnosing resonance disorders. Am J Orthod Dentofac Orthop 1990; 98: 323-32. https://doi.org/10.1016/S0889-5406(05)81489-1
  21. Wu JT, Huang GF, Huang CS, Noordhoff MS. Nasopharyngoscopic evaluation and cephalometric analysis of velopharynx in normal and cleft palate patients. Ann Plast Surg 1996; 36: 117-23. https://doi.org/10.1097/00000637-199602000-00002
  22. Aboudara C, Nielsen I, Huang JC, Maki K, Miller AJ, Hatcher D. Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2009; 135: 468-79. https://doi.org/10.1016/j.ajodo.2007.04.043
  23. El H, Palomo JM. Airway volume for different dentofacial skeletal patterns. Am J Orthod Dentofacial Orthop 2011; 139: e511-21. https://doi.org/10.1016/j.ajodo.2011.02.015
  24. Hellsing E. Changes in pharyngeal airway in relation to extension of the head. Eur J Orthod 1989; 11: 359-65. https://doi.org/10.1093/oxfordjournals.ejo.a036007
  25. Pracharktam N, Hans MG, Strohl KP, Redline S. Upright and supine cephalometric evaluation of obstructive sleep apnoea syndrome an snoring subjects. Angle Orthod 1994; 64: 63-73.
  26. Handelman CS, Osborne G. Growth of the nasopharynx and adenoid development from one to eighteeen years. Angle Orthod 1976; 46: 243-59.
  27. Jeans WD, Fernando DC, Maw AR, Leighton BC. A longitudinal study of the growth of the nasopharynx and its contents in normal children. Br J Radiol 1981; 54: 117-21. https://doi.org/10.1259/0007-1285-54-638-117
  28. Subtelny JD. Malocclusions, orthodontic corrections and orofacial muscle adaptation. Angle Orthod 1970; 40: 170-201.
  29. Ceylan I, Oktay H. A study on the pharyngeal size in different skeletal patterns. Am J Orthod Dentofacial Orthop 1995; 108: 69-75. https://doi.org/10.1016/S0889-5406(95)70068-4
  30. Zhong Z, Tang Z, Gao X, Zeng XL. A comparison study of upper airway among different skeletal craniofacial patterns in nonsnoring Chinese children. Angle Orthod 2010; 80: 267-74. https://doi.org/10.2319/030809-130.1
  31. Sosa FA, Graber TM, Muller TP. Postpharyngeal lymphoid tissue in Angle Class I and Class II malocclusions. Am J Orthod 1982; 81: 299-309. https://doi.org/10.1016/0002-9416(82)90216-0
  32. Wenzel A, Williams S, Ritzau M. Relationships of changes in craniofacial morphology, head posture, and nasopharyngeal airway size following mandibular osteotomy. Am J Orthod Dentofacial Orthop 1989; 96: 138-43. https://doi.org/10.1016/0889-5406(89)90254-0
  33. de Freitas MR, Alcazar NM, Janson G, de Freitas KM, Henriques JF. Upper and lower pharyngeal airways in subjects with Class I and Class II malocclusions and different growth patterns. Am J Orthod Dentofacial Orthop 2006; 130: 742-5. https://doi.org/10.1016/j.ajodo.2005.01.033
  34. Alves PV, Zhao L, O'Gara M, Patel PK, Bolognese A. Threedimensional cephalometric study of upper airway space in skeletal class II and III healthy patients. J Craniofac Surg 2008; 19: 1497-507. https://doi.org/10.1097/SCS.0b013e31818972ef
  35. Memon S, Fida M, Shaikh A. Comparison of different craniofacial patterns with pharyngeal widths. J Coll Physicians Surg Pak 2012; 22: 302-6.
  36. Kerr WJ. The nasopharynx, face height and overbite. Angle Orthod 1985; 55: 31-6.
  37. Kecik D. The effect of mandibular position on upper airway dimensions. Turk J Orthod 2009; 22: 93-101. https://doi.org/10.13076/1300-3550-22-2-93
  38. Grauer D, Cevidanes LS, Styner MA, Ackerman JL, Proffit WR. Pharyngeal airway volume and shape from cone-beam computed tomography: relationship to facial morphology. Am J Orthod Dentofacial Orthop 2009; 136: 805-14. https://doi.org/10.1016/j.ajodo.2008.01.020
  39. Ozbek MM, Memikoglu TU, Gogen H, Lowe AA, Baspinar E. Oropharyngeal airway dimensions and functional-orthopedic treatment in skeletal Class II cases. Angle Orthod 1998; 68: 327-36.

Cited by

  1. 측모두부 방사선사진을 이용한 골격성 II급 부정교합 청소년의 성장 단계별 상기도부의 계측 분석 vol.45, pp.1, 2017, https://doi.org/10.5933/jkapd.2018.45.1.98
  2. Craniofacial characteristics of Syrian adolescents with Class II division 1 malocclusion: a retrospective study vol.8, pp.None, 2017, https://doi.org/10.7717/peerj.9545
  3. The evaluation of the relationship between cervical vertebral anomalies with skeletal malocclusion types and upper airway dimensions vol.38, pp.3, 2020, https://doi.org/10.1080/08869634.2018.1503136
  4. Pharyngeal Airway Dimensions Assessed by Acoustic Pharyngometry in a Mixed Indian Population: A Cross-sectional Study vol.16, pp.2, 2017, https://doi.org/10.5005/jp-journals-10069-0070
  5. Overloaded Orthopedic Force Induces Condylar Subchondral Bone Absorption by Stimulating Rat Mesenchymal Stem Cells Differentiating into Osteoclasts via mTOR-Regulated RANKL/OPG Secretion in Osteobla vol.30, pp.1, 2017, https://doi.org/10.1089/scd.2020.0163
  6. Cone beam computed tomographic evaluation of pharyngeal airway in North Indian children with different skeletal patterns vol.13, pp.2, 2017, https://doi.org/10.4329/wjr.v13.i2.40