DOI QR코드

DOI QR Code

Isolation of a Potent Protease Producing Bacillus subtilis from Kimchi

김치로부터 단백질 분해 효소활성이 우수한 Bacillus subtilis 균주의 분리

  • Choi, Chan-Yeong (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • 최찬영 (강원대학교 식품생명공학과) ;
  • 김명동 (강원대학교 식품생명공학과)
  • Received : 2016.11.25
  • Accepted : 2017.01.10
  • Published : 2017.03.28

Abstract

Microbial strains exhibiting proteolytic activity were isolated from kimchi, one of traditional fermented foods in Korea. Eight strains formed clear zones around their colonies when grown on TSA plates supplemented with skim milk. MBE/L865 exhibited 2.6-fold higher protease activity than that of control strain (Bacillus subtilis KCTC13112). MBE/L865 was identified as B. subtilis and deposited in the Korean Collection for Type Cultures under the accession number of KCCM43059. The optimum growth conditions for B. subtilis KCCM43059 were determined to be $37^{\circ}C$ and pH 8. The strain showed maximum protease activity ($429.37{\pm}18.65U/mg$ protein) at $60^{\circ}C$ and pH 6. Further, B. subtilis KCCM43059 had a higher salt (NaCl) tolerance than that of the control strain.

전국에서 수집한 발효식품으로부터 단백질 분해 효소활성을 보유한 균주를 분리하였다. Skim milk를 첨가한 TSA 평판배지에서 투명환을 형성한 8점의 균주 중 김치에서 분리된 MBE/L865 균주가 대조구인 KCTC13112 균주에 비하여 약 2.6배의 효소활성을 나타내었으며 Bacillus subtilis로 동정하여 한국미생물보존센터에 KCCM43059 균주로 기탁하였다. B. subtilis KCCM43059 균주의 최적 배양조건은 $37^{\circ}C$, pH 8으로 대조구인 KCTC13112 균주의 비성장속도보다 우수하였다. 반응조건 $60^{\circ}C$, pH 6에서 $429.37{\pm}18.65U/mg$ protein의 최적 효소활성을 나타내었으며 동일조건에서 대조구 균주보다 효소활성이 우수하였다. 또한 B. subtilis KCCM43059 균주는 대조구 균주에 비하여 NaCl에 상대적으로 높은 내성을 나타내었다.

Keywords

References

  1. Kim MN, Si JB, Wee YJ. 2016. Identification of a newly isolated protease-producing bacterium, Bacillus subtilis FBL-1, from soil. Korean J. Microbiol. Biotechnol. 44: 185-193. https://doi.org/10.4014/mbl.1511.11016
  2. Lee JH, Bai DH. 2004. A thermostable protease produced from Bacillus sp. DF 218. Korean J. Food Sci. Technol. 36: 105-110.
  3. Bang SH, Jeong IS. 2011. Characterization of an alkaline protease from an alkalophilic Bacillus pseudofirmus HS-54. Korean J. Microbiol. 47: 194-199.
  4. Yang SJ, Kang EJ, Lee RH, Jung HK, Park CS, Hong JH. 2014. Characterization of amylase produced by Bacillus subtilis KMKW4 isolated from Kimchi. J. Chitin Chitosan. 19: 21-28.
  5. Lee SK, Heo S, Bae DH, Choi KH. 1998. Medium optimization for fibrinolytic enzyme production by Bacillus subtilis KCK-7 isolated from Korean traditional Chungkookjang. Korean J. Appl. Microbiol. Biotechnol. 26: 226-231.
  6. Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, et al. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84: 307-312. https://doi.org/10.1016/S0922-338X(97)89249-5
  7. Yoshihiro O, Hiroki T, Seiji M, Yutaka I, Kohji M, Atsuhi M, et al. 1990. Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric. Biol. Chem. 54: 2521-2519.
  8. Banerjee R, Bhattarcharyya BC. 1993. Kinetic properties of extracellular alkaline protease of Rhizopus oryzae. J. Ferment. Bioeng. 75: 380-382. https://doi.org/10.1016/0922-338X(93)90138-X
  9. Nelson G, Young TW. 1987. Extracellular acid and alkaline proteases from Candida olea. J. Gen. Microbiol. 133: 1461-1469.
  10. Yoon KH, Lee MS, Park BW, Park YH, Kim HI, Kim JH, et al. 2006. Enzyme production of a protease-producing strain, Bacillus sp. SH-8 isolated from insect-eating plant. Korean J. Microbiol. Biotechnol. 34: 323-328.
  11. Horikoshi K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Agric. Biol. Chem. 35: 1407-1414.
  12. Yi HK, Chun YJ, Kim HB. 1999. Characterization of Bacillus cereus SH-7 extracellular protease. J. Microbiol. 37: 213-217.
  13. Banerjee U, Sani R, Azmi W, Soni R. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundary detergent additive. Process. Biochem. 35: 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
  14. Dhandapani R, Vijayaragavan R. 1994. Production of a thermophilic, extracellular alkaline protease by Bacillus stearothermophilus AP-4. World. J. Microbiol. Biotechnol. 10: 33-35. https://doi.org/10.1007/BF00357559
  15. Banik R, Prakash M. 2004. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res. 159: 135-140. https://doi.org/10.1016/j.micres.2004.01.002
  16. Lee HJ, Yoo JS, Park YS, Bai DH. 2015. Identification of an alkalophilic bacterium producing an alkaline protease from soil. Food Eng. Prog. 19: 414-419. https://doi.org/10.13050/foodengprog.2015.19.4.414
  17. Prasanth M, Nitin M, Shubham J, Saharika S, Ramankannan A, Shanthini T, et al. 2016. Potential of Bacillus subtilis to produce acidic protease under mutagenic condition. Int. J. Pure App. Biosci. 4: 126-132. https://doi.org/10.18782/2320-7051.2188
  18. Kim HK, Kim KH, Lee JK, Kim YO, Nam HS, Oh TK. 1995. Characterization of a thermostable protease from thermophilic Bacillus amyloliquefaciens NS 15-4. Korean J. Appl. Microbiol. Biotechnol. 23: 322-328.
  19. Kim EY, Kim DG, Kim YR, Choi SY, Kong IS. 2009. lsolation and identification of halotolerant Bacillus sp. SJ-10 and characterization of its extracellular protease. Korean J. Microbiol. 45: 193-199.
  20. Jeong SC, Hyun KW, Kim JH, Lee JS. 2001. Isolation of a halotolerant yeast and the production of extracellular protease. Korean J. Biotechnol. Bioeng. 16: 158-162.
  21. Lee NK, Kim SY, Choi SY, Paik HD. 2013. Probiotic Bacillus subtilis KU201 having antifungal and antimicrobial properties isolated from Kimchi. Food Sci. Biotechnol. 22: 1375-1379.
  22. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197: 1340-1347. https://doi.org/10.1006/bbrc.1993.2624
  23. Yang SJ, Lee DH, Park HM, Jung HK, Park CS, Hong JH. 2014. Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang. Korean J. Food Preserv. 21: 286-293. https://doi.org/10.11002/kjfp.2014.21.2.286
  24. Kim DY, Lee ET, Kim SD. 2003. Purification and characterization of fibrinolytic enzyme produced by Bacillus subtilis K7 isolated from Korean traditional soy sauce. J. Korean Soc. Agric. Chem. Biotechnol. 46: 176-182.
  25. Eiggert T, Brockmeier U, Droge MJ, Quax WJ, Jaeqer KE. 2003. Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol. Lett. 225: 319-324. https://doi.org/10.1016/S0378-1097(03)00536-6
  26. Ahn MJ, Ku HJ, Lee SH, Lee JH. 2015. Chracterization of a novel fibrinolytic enzyme, BsfA, from Bacillus subtilis ZA400 in Kimchi reveals its pertinence to thrombosis treatment. J. Microbiol. Biotechnol. 25: 2090-2099. https://doi.org/10.4014/jmb.1509.09048
  27. Jeong SJ, Yang HJ, Jeong SY, Jeong DY. 2015. Identification of characterization and statistical optimization of constituent for Bacillus subtilis SCJ4 isolated from Korean traditional fermented food. Korean J. Microbiol. 51: 48-60. https://doi.org/10.7845/kjm.2015.5004
  28. Park CS, Min DK, Ahn YS, Lee JH, Hong SK, Kim JH, et al. 2002. Isolation and characteristics of soy protein-degrading strain, Bacillus subtilis EB464. Korean J. Appl. Microbiol. Biotechnol. 30: 210-215.
  29. Cupp-Enyard C. 2008. Sigma's non-specific protease acivity assay - casein as a substrate. J. Vis. Exp. 17: 899.
  30. Muyan C, Xiumei Z, Tianxiang G, Chao C. 2006. Effects of temperature pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus. Chin. J. Oceanol. Limnol. 24: 300-306. https://doi.org/10.1007/BF02842632
  31. Sim HS, Kim MD. 2016. Antipathogenic activity of Bacillus amyloliquefaciens isolated from Korean traditional rice wine. Korean J. Microbiol. Biotechnol. 44: 98-105. https://doi.org/10.4014/mbl.1511.11005
  32. Hongoh Y, Yuzawa H, Ohkuma M, Kudo T. 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural enviroment. FEMS Microbiol. Lett. 221: 299-304. https://doi.org/10.1016/S0378-1097(03)00218-0
  33. Moon SW, Park SH, Kang BS, Lee MK. 2014. Fermentation characteristics of low-salt Kimchi with starter on fermentation temperature and salt concentration. Korean J. Food Nutr. 27: 785-795. https://doi.org/10.9799/ksfan.2014.27.5.785
  34. Ko MS, Hur SW, Kim MR, Jung SJ, Lee H, Cho MS. 2015. The quaility properties of rapidly fermented Mukeun (long-term fermented) kimchi with different salinity and fermented temperature. Korean J. Food Nutr. 28: 335-342. https://doi.org/10.9799/ksfan.2015.28.3.335
  35. Dunkan DB. 1955. Multiple range and multiple F tests. Biometrics. 11: 1-42. https://doi.org/10.2307/3001478
  36. Min SG, Kim JH, Kim TW, Kim KN. 2003. Isolation and identification of protease producing bacteria in kimchi. Korean J. Food Sci. Technol. 35: 666-670.
  37. Jun HK, Bae KM, Kim YH, Baik HS. 2000. Production and chractrization of cyclodextrin glucanotransferase from Bacilus sp. JK-43 isolated from Kimchi. J. Korean Soc. Food Sci. Nutr. 29: 41-48.
  38. Kim JE, Bai DH. 2006. A thermostable protease produced from Bacillus sp. JE 375 isolated from Korean soil. Korean J. Food. Sci. Technol. 38: 419-426.
  39. Choi KK, Cui CB, Ham SS, Lee DS. 2003. Isolation, identification and growth characteristics of main strain related to Meju fermentation. J. Korean Soc. Food Sci. Nutr. 32: 818-824. https://doi.org/10.3746/jkfn.2003.32.6.818
  40. Lee SY, Kim JY, Baek SY, Yeo SH, Koo BS, Park HY, et al. 2011. Isolation and characterization of oligotrophic strains with high enzyme activity from buckwheat Sokseongjang. Korean J. Food. Sci. Technol. 43: 735-741. https://doi.org/10.9721/KJFST.2011.43.6.735
  41. Lee HJ, Yoo JS, Bai DH. 2016. Purification and characterization of an alkaline protease produced by alkalophilic Bacillus sp. DK122. Korean J. Microbiol. Biotechnol. 44: 333-340. https://doi.org/10.4014/mbl.1606.06002
  42. Wang C, Yu S, Song T, He T, Shao H, Wang H. 2016. Extracellular proteome profiling of Bacillus pumilus SCU11 producing alkaline protease for dehairing. J. Microbiol. Biotechnol. 26: 1993-2005. https://doi.org/10.4014/jmb.1602.02042

Cited by

  1. 토마토 발효액을 이용한 고추장의 이화학적 및 기능적 특성 vol.52, pp.2, 2017, https://doi.org/10.9721/kjfst.2020.52.2.183
  2. Determination of Optimum Culture Conditions and Screening of Bacterial Isolates from Kimchi for Fermentation of Turmeric (Curcuma longa L.) vol.24, pp.4, 2020, https://doi.org/10.13050/foodengprog.2020.24.4.383