참고문헌
-
Ustok FI, Tari C, Harsa S. 2010. Biochemical and thermal properties of
${\beta}$ -galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem. 119: 1114-1120. https://doi.org/10.1016/j.foodchem.2009.08.022 - Macfarlane G, Steed H, Macfarlane S. 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104: 305-344.
- Rastall RA, Maitin V. 2002. Prebiotics and synbiotics: towards the next generation. Curr. Opin. Biotechnol. 13: 490-496. https://doi.org/10.1016/S0958-1669(02)00365-8
- Gopal PK, Sullivan PA, Smart JB. 2001. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int. Dairy J. 11: 19-25. https://doi.org/10.1016/S0958-6946(01)00026-7
- Fernandez Murga M, Hebert E, Savoy de Giori G, Font De Valdez G. 1997. Beta-galactosidase activity in thermophilic lactobacilli. their potential use as dietary adjuct. Milchwissenschaft 52: 316-318.
- Boon M, Janssen A, Van't Riet K. 2000. Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme Microb. Technol. 26: 271-281. https://doi.org/10.1016/S0141-0229(99)00167-2
- Playne M, Crittenden R. 1996. Commercially available oligosaccharides. Bulletin-FIL-IDF (Belgium) FAO Agris.
- Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316. https://doi.org/10.1042/bj2800309
-
Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, et al. 2009. Immobilization of recombinant thermostable
${\beta}$ -galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J. Dairy Sci. 92: 491-498. https://doi.org/10.3168/jds.2008-1618 -
Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H, Wakagi T. 2002. Trimeric crystal structure of the glycoside hydrolase family 42
${\beta}$ -galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J. Mol. Biol. 322: 79-91. https://doi.org/10.1016/S0022-2836(02)00746-5 - Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
-
Kishore D, Kayastha AM. 2012. A
${\beta}$ -galactosidase from chick pea (Cicer arietinum) seeds: its purification, biochemical properties and industrial applications. Food Chem. 134: 1113-1122. https://doi.org/10.1016/j.foodchem.2012.03.032 -
Nguyen T-T, Nguyen HA, Arreola SL, Mlynek G, Djinovic Carugo K, Mathiesen G, et al. 2012. Homodimeric
${\beta}$ -galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J. Agric. Food Chem. 60: 1713-1721. https://doi.org/10.1021/jf203909e -
Goulas TK, Goulas AK, Tzortzis G, Gibson GR. 2007. Molecular cloning and comparative analysis of four
${\beta}$ -galactosidase genes from Bifidobacterium bifidum NCIMB41171. Appl. Microbiol. Biotechnol. 76: 1365-1372. https://doi.org/10.1007/s00253-007-1099-1 -
Hung M-N, Xia Z, Hu N-T, Lee BH. 2001. Molecular and biochemical analysis of two
${\beta}$ -galactosidases from Bifidobacterium infantis HL96. Appl. Environ. Microbiol. 67: 4256-4263. https://doi.org/10.1128/AEM.67.9.4256-4263.2001 - Vaillancourt K, Moineau S, Frenette M, Lessard C, Vadeboncoeur C. 2002. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products. J. Bacteriol. 184: 785-793. https://doi.org/10.1128/JB.184.3.785-793.2002
-
Craven GR, Steers E, Anfinsen CB. 1965. Purification, composition, and molecular weight of the
${\beta}$ -galactosidase of Escherichia coli K12. J. Biol. Chem. 240: 2468-2477. -
Juajun O, Nguyen T-H, Maischberger T, Iqbal S, Haltrich D, Yamabhai M. 2011. Cloning, purification, and characterization of
${\beta}$ -galactosidase from Bacillus licheniformis DSM 13. Appl. Microbiol. Biotechnol. 89: 645-654. https://doi.org/10.1007/s00253-010-2862-2 -
Karasova-Lipovova P, Strnad H, Spiwok V, Mala S, Kralova B, Russell NJ. 2003. The cloning, purification and characterisation of a cold-active
${\beta}$ -galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb. Technol. 33: 836-844. https://doi.org/10.1016/S0141-0229(03)00211-4 -
Nguyen T-H, Splechtna B, Steinbock M, Kneifel W, Lettner HP, Kulbe KD, Haltrich D. 2006. Purification and characterization of two novel
${\beta}$ -galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 54: 4989-4998. https://doi.org/10.1021/jf053126u -
Nguyen T-H, Splechtna B, Krasteva S, Kneifel W, Kulbe KD, Divne C, Haltrich D. 2007. Characterization and molecular cloning of a heterodimeric
${\beta}$ -galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol. Lett. 269: 136-144. https://doi.org/10.1111/j.1574-6968.2006.00614.x -
Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D. 2010.
${\beta}$ -Galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol. J. 5: 838-847. https://doi.org/10.1002/biot.201000126 -
Iqbal S, Nguyen T-H, Nguyen TT, Maischberger T, Haltrich D. 2010.
${\beta}$ -Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr. Res. 345: 1408-1416. https://doi.org/10.1016/j.carres.2010.03.028 -
Juers DH, Matthews BW, Huber RE. 2012. LacZ
${\beta}$ -galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21: 1792-1807. https://doi.org/10.1002/pro.2165 -
Nguyen T-H, Splechtna B, Yamabhai M, Haltrich D, Peterbauer C. 2007. Cloning and expression of the
${\beta}$ -galactosidase genes from Lactobacillus reuteri in Escherichia coli. J. Biotechnol. 129: 581-591. https://doi.org/10.1016/j.jbiotec.2007.01.034 - Bork P, Sander C, Valencia A. 1993. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 2: 31-40.
- Hildebrand A, Remmert M, Biegert A, Soding J. 2009. Fast and accurate automatic structure prediction with HHpred. Proteins 77: 128-132. https://doi.org/10.1002/prot.22499
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Manchenko GP. 2002. Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press, Boca Raton, FL. USA.
- Lim K, Chae C-B. 1989. A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. Biotechniques 7: 576-579.
-
Lo S, Dugdale ML, Jeerh N, Ku T, Roth NJ, Huber RE. 2010. Studies of Glu-416 variants of
${\beta}$ -galactosidase (E. coli) show that the active site$Mg^{2+}$ is not important for structure and indicate that the main role of$Mg^{2+}$ is to mediate optimization of active site chemistry. Protein J. 29: 26-31. https://doi.org/10.1007/s10930-009-9216-x -
He X, Han N, Wang Y-P. 2016. Cloning, purification, and characterization of a heterodimeric
${\beta}$ -galactosidase from Lactobacillus kefiranofaciens ZW3. J. Microbiol. Biotechnol. 26: 20-27. https://doi.org/10.4014/jmb.1507.07013 - Hug LA, B ak er BJ, Anantharaman K, B rown CT, P robst AJ, Castelle CJ, et al. 2016. A new view of the tree of life. Nat. Microbiol. 1: 16048. https://doi.org/10.1038/nmicrobiol.2016.48
-
Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JLS, Subramaniam S. 2015. 2.2 A resolution cryo-EM structure of
${\beta}$ -galactosidase in complex with a cell-permeant inhibitor. Science 348: 1147-1151. https://doi.org/10.1126/science.aab1576
피인용 문헌
- Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis vol.77, pp.None, 2018, https://doi.org/10.1016/j.bioorg.2018.01.006
- A novel thermostable β-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey vol.102, pp.11, 2017, https://doi.org/10.3168/jds.2019-16654
- Characterization and Application of a New β-Galactosidase Gal42 From Marine Bacterium Bacillus sp. BY02 vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.742300