References
- Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism-from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937-947. https://doi.org/10.1038/nrmicro1286
- Feng P, Shang Y, Cen K, Wang C. 2015. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc. Natl. Acad. Sci. USA 112: 11365-11370. https://doi.org/10.1073/pnas.1503200112
- Xu YQ, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnar I. 2008. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem. Biol. 15: 898-907. https://doi.org/10.1016/j.chembiol.2008.07.011
- Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ, de Wit PJ. 2014. Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS One 9: e85877. https://doi.org/10.1371/journal.pone.0085877
- de Wit PJGM, van der Burgt A, Okmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, et al. 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 8: e1003088. https://doi.org/10.1371/journal.pgen.1003088
- Sanchez JF, Somoza AD, Keller NP, Wang CCC. 2012. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep. 29: 351-371. https://doi.org/10.1039/c2np00084a
- Steinchen W, Lackner G, Yasmin S, Schrettl M, Dahse H-M, Haas H, Hoffmeister D. 2013. Bimodular peptide synthetase SidE produces fumarylalanine in the human pathogen Aspergillus fumigatus. Appl. Environ. Microbiol. 79: 6670-6676. https://doi.org/10.1128/AEM.02642-13
- Gibson DM, Donzelli BGG, Krasnoff SB, Keyhani NO. 2014. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat. Prod. Rep. 31: 1287-1305. https://doi.org/10.1039/C4NP00054D
- Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330: 1543-1546. https://doi.org/10.1126/science.1194573
- Rohlfs M, Churchill ACL. 2011. Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet. Biol. 48: 23-34. https://doi.org/10.1016/j.fgb.2010.08.008
- Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, et al. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2: 483. https://doi.org/10.1038/srep00483
- Edgar R. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113. https://doi.org/10.1186/1471-2105-5-113
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
- Bolker M, Basse CW, Schirawski J. 2008. Ustilago maydis secondary metabolism-from genomics to biochemistry. Fungal Genet. Biol. 45: S88-S93. https://doi.org/10.1016/j.fgb.2008.05.007
- Guo CJ, Wang CC. 2014. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front. Microbiol. 5: 717.
- Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, et al. 2013. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 13: 91-91. https://doi.org/10.1186/1471-2180-13-91
- Frisvad JC, Smedsgaard J, Larsen TO, Samson RA. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 201-241.
- Boettger D, Hertweck C. 2013. Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 14: 28-42. https://doi.org/10.1002/cbic.201200624
- Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39: W339-W346. https://doi.org/10.1093/nar/gkr466
- Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB. 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98: 533-544. https://doi.org/10.1007/s00253-013-5344-5
- Kopp F, Marahiel MA. 2007. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 24: 735-749. https://doi.org/10.1039/b613652b
- Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, Tang Y. 2012. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8: 823-830. https://doi.org/10.1038/nchembio.1047
- Du LC, Lou LL. 2010. PKS and NRPS release mechanisms. Nat. Prod. Rep. 27: 255-278. https://doi.org/10.1039/B912037H
- Chiang Y-M, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo H-C, et al. 2008. Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem. Biol. 15: 527-532. https://doi.org/10.1016/j.chembiol.2008.05.010
- Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, et al. 2013. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet. 9: e1003496. https://doi.org/10.1371/journal.pgen.1003496
- Bushley KE, Turgeon BG. 2010. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 10: 1. https://doi.org/10.1186/1471-2148-10-1
- Lobo LS, Luz C, Fernandes EKK, Juarez MP, Pedrini N. 2015. Assessing gene expression during pathogenesis: use of qRT-PCR to follow toxin production in the entomopathogenic fungus Beauveria bassiana during infection and immune response of the insect host Triatoma infestans. J. Invertebr. Pathol. 128: 14-21. https://doi.org/10.1016/j.jip.2015.04.004
- Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG. 2006. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18: 2836-2853. https://doi.org/10.1105/tpc.106.045633
- Oide S, Krasnoff SB, Gibson DM, Turgeon BG. 2007. Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot. Cell 6: 1339-1353. https://doi.org/10.1128/EC.00111-07
- Atanasova L, Knox BP, Kubicek CP, Druzhinina IS, Baker SE. 2013. The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot. Cell 12: 1499-1508. https://doi.org/10.1128/EC.00103-13
- Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H, et al. 2010. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol. Microbiol. 75: 1260-1271. https://doi.org/10.1111/j.1365-2958.2010.07048.x
- Schwecke T, Gottling K, Durek P, Duenas I, Kaufer NF, Zock-Emmenthal S, et al. 2006. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem 7: 612-622. https://doi.org/10.1002/cbic.200500301
- Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H. 2009. Ferricrocin, a siderophore involved in intra-and transcellular iron distribution in Aspergillus fumigatus. Appl. Environ. Microbiol. 75: 4194-4196. https://doi.org/10.1128/AEM.00479-09
- Stack D, Neville C, Doyle S. 2007. Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology 153: 1297-1306. https://doi.org/10.1099/mic.0.2006/006908-0
- Yun C-S, Motoyama T, Osada H. 2015. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat. Commun. 6: 8758. https://doi.org/10.1038/ncomms9758
- Minowa Y, Araki M, Kanehisa M. 2007. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J. Mol. Biol. 368: 1500-1517. https://doi.org/10.1016/j.jmb.2007.02.099
- Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. 2011. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39: W362-W367. https://doi.org/10.1093/nar/gkr323
- Khayatt BI, Overmars L, Siezen RJ, Francke C. 2013. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS One 8: 10.
- Knudsen M, Sondergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CN. 2016. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Bioinformatics 32: 325-329. https://doi.org/10.1093/bioinformatics/btv600
- Bachmann BO, Ravel J. 2009. Methods for in silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol. 458: 181-217.
- Jegorov A, Haiduch M, Sulc M, Havlicek V. 2006. Nonribosomal cyclic peptides: specific markers of fungal infections. J. Mass Spectrom. 41: 563-576. https://doi.org/10.1002/jms.1042
- Jegorov A, Paizs B, Kuzma M, Zabka M, Landa Z, Sulc M, et al. 2004. Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways. J. Mass Spectrom. 39: 949-960. https://doi.org/10.1002/jms.674
- Wang B, Kang QJ, Lu YZ, Bai LQ, Wang CS. 2012. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc. Natl. Acad. Sci. USA 109: 1287-1292. https://doi.org/10.1073/pnas.1115983109
- Pedras MSC, Irina Zaharia L, Ward DE. 2002. The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59: 579-596. https://doi.org/10.1016/S0031-9422(02)00016-X
- Pal S, St. Leger RJ, Wu LP. 2007. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J. Biol. Chem. 282: 8969-8977. https://doi.org/10.1074/jbc.M605927200
- Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B. 2005. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Biol. 57: 1036-1050.
- Xu YQ, Rozco R, Wijeratne EMK, Espinosa-Artiles P, Gunatilaka AAL, Stock SP, Molnar I. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet. Biol. 46: 353-364. https://doi.org/10.1016/j.fgb.2009.03.001
- Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226. https://doi.org/10.1093/nar/gku1221
- Ortiz-Urquiza A, Keyhani NO. 2015. Stress response signaling and virulence: insights from entomopathogenic fungi. Curr. Genet. 61: 239-249. https://doi.org/10.1007/s00294-014-0439-9
- Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, Sendino J, et al. 2010. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev. Iberoam. Micol. 27: 155-182. https://doi.org/10.1016/j.riam.2010.10.003
- Luo ZB, Li YJ, Mousa J, Bruner S, Zhang YJ, Pei Y, Keyhani NO. 2015. Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana. Environ. Microbiol. 17: 1189-1202. https://doi.org/10.1111/1462-2920.12542
- Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P. 2012. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet. Biol. 49: 602-612. https://doi.org/10.1016/j.fgb.2012.06.003
- Bayram O, Braus GH. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36: 1-24. https://doi.org/10.1111/j.1574-6976.2011.00285.x
- Xu YQ, Wijeratne EMK, Espinosa-Artiles P, Gunatilaka AAL, Molnar I. 2009. Combinatorial mutasynthesis of scrambled beauvericins, cyclooligomer depsipeptide cell migration inhibitors from Beauveria bassiana. Chembiochem 10: 345-354. https://doi.org/10.1002/cbic.200800570
- Halo LM, Heneghan MN, Yakasai AA, Song Z, Williams K, Bailey AM, et al. 2008. Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J. Am. Chem. Soc. 130: 17988-17996. https://doi.org/10.1021/ja807052c
Cited by
- Direct and Indirect Effect via Endophytism of Entomopathogenic Fungi on the Fitness of Myzus persicae and Its Ability to Spread PLRV on Tobacco vol.12, pp.2, 2017, https://doi.org/10.3390/insects12020089