DOI QR코드

DOI QR Code

The Stress-Responsive and Host-Oriented Role of Nonribosomal Peptide Synthetases in an Entomopathogenic Fungus, Beauveria bassiana

  • Liu, Hang (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Xie, Linan (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Jing (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Guo, Qiannan (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yang, Shengnan (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Liang, Pei (Department of Entomology, China Agricultural University) ;
  • Wang, Chengshu (Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences) ;
  • Lin, Min (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Xu, Yuquan (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Liwen (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2016.06.27
  • Accepted : 2016.11.13
  • Published : 2017.03.28

Abstract

Beauveria bassiana infects a number of pest species and is known to produce insecticidal substances, such as the nonribosomal peptides (NRPs) beauvericin and bassianolide. However, most NRPs and their biological roles in B. bassiana remain undiscovered. To identify NRPs that potentially contribute to pathogenesis, the 21 predicted NRP synthetases (NRPSs) or NRPS-like proteins of B. bassiana ARSEF 2860 were primarily ranked into three functional groups: basic metabolism (7 NRPSs), pathogenicity (12 NRPSs), and unknown function (2 NRPSs). Based on the transcript levels during in vivo growth on diamondback moth (Plutella xylostella (Linnaeus)), half of the Group II NRPSs were likely to be involved in infection. Given that the metabolites biosynthesized by these NRPSs remain to be determined, our result underlines the importance of the NRPSome in fungal pathogenesis, and will serve as a guide for future genomic mining projects to discover functionally essential and structurally diverse NRPs in fungal genomes.

Keywords

References

  1. Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism-from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937-947. https://doi.org/10.1038/nrmicro1286
  2. Feng P, Shang Y, Cen K, Wang C. 2015. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc. Natl. Acad. Sci. USA 112: 11365-11370. https://doi.org/10.1073/pnas.1503200112
  3. Xu YQ, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnar I. 2008. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem. Biol. 15: 898-907. https://doi.org/10.1016/j.chembiol.2008.07.011
  4. Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ, de Wit PJ. 2014. Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS One 9: e85877. https://doi.org/10.1371/journal.pone.0085877
  5. de Wit PJGM, van der Burgt A, Okmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, et al. 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 8: e1003088. https://doi.org/10.1371/journal.pgen.1003088
  6. Sanchez JF, Somoza AD, Keller NP, Wang CCC. 2012. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep. 29: 351-371. https://doi.org/10.1039/c2np00084a
  7. Steinchen W, Lackner G, Yasmin S, Schrettl M, Dahse H-M, Haas H, Hoffmeister D. 2013. Bimodular peptide synthetase SidE produces fumarylalanine in the human pathogen Aspergillus fumigatus. Appl. Environ. Microbiol. 79: 6670-6676. https://doi.org/10.1128/AEM.02642-13
  8. Gibson DM, Donzelli BGG, Krasnoff SB, Keyhani NO. 2014. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat. Prod. Rep. 31: 1287-1305. https://doi.org/10.1039/C4NP00054D
  9. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330: 1543-1546. https://doi.org/10.1126/science.1194573
  10. Rohlfs M, Churchill ACL. 2011. Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet. Biol. 48: 23-34. https://doi.org/10.1016/j.fgb.2010.08.008
  11. Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, et al. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2: 483. https://doi.org/10.1038/srep00483
  12. Edgar R. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113. https://doi.org/10.1186/1471-2105-5-113
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  14. Bolker M, Basse CW, Schirawski J. 2008. Ustilago maydis secondary metabolism-from genomics to biochemistry. Fungal Genet. Biol. 45: S88-S93. https://doi.org/10.1016/j.fgb.2008.05.007
  15. Guo CJ, Wang CC. 2014. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front. Microbiol. 5: 717.
  16. Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, et al. 2013. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 13: 91-91. https://doi.org/10.1186/1471-2180-13-91
  17. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA. 2004. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 201-241.
  18. Boettger D, Hertweck C. 2013. Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 14: 28-42. https://doi.org/10.1002/cbic.201200624
  19. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39: W339-W346. https://doi.org/10.1093/nar/gkr466
  20. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB. 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98: 533-544. https://doi.org/10.1007/s00253-013-5344-5
  21. Kopp F, Marahiel MA. 2007. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 24: 735-749. https://doi.org/10.1039/b613652b
  22. Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, Tang Y. 2012. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8: 823-830. https://doi.org/10.1038/nchembio.1047
  23. Du LC, Lou LL. 2010. PKS and NRPS release mechanisms. Nat. Prod. Rep. 27: 255-278. https://doi.org/10.1039/B912037H
  24. Chiang Y-M, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo H-C, et al. 2008. Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem. Biol. 15: 527-532. https://doi.org/10.1016/j.chembiol.2008.05.010
  25. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, et al. 2013. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet. 9: e1003496. https://doi.org/10.1371/journal.pgen.1003496
  26. Bushley KE, Turgeon BG. 2010. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 10: 1. https://doi.org/10.1186/1471-2148-10-1
  27. Lobo LS, Luz C, Fernandes EKK, Juarez MP, Pedrini N. 2015. Assessing gene expression during pathogenesis: use of qRT-PCR to follow toxin production in the entomopathogenic fungus Beauveria bassiana during infection and immune response of the insect host Triatoma infestans. J. Invertebr. Pathol. 128: 14-21. https://doi.org/10.1016/j.jip.2015.04.004
  28. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG. 2006. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18: 2836-2853. https://doi.org/10.1105/tpc.106.045633
  29. Oide S, Krasnoff SB, Gibson DM, Turgeon BG. 2007. Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot. Cell 6: 1339-1353. https://doi.org/10.1128/EC.00111-07
  30. Atanasova L, Knox BP, Kubicek CP, Druzhinina IS, Baker SE. 2013. The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot. Cell 12: 1499-1508. https://doi.org/10.1128/EC.00103-13
  31. Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H, et al. 2010. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol. Microbiol. 75: 1260-1271. https://doi.org/10.1111/j.1365-2958.2010.07048.x
  32. Schwecke T, Gottling K, Durek P, Duenas I, Kaufer NF, Zock-Emmenthal S, et al. 2006. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem 7: 612-622. https://doi.org/10.1002/cbic.200500301
  33. Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H. 2009. Ferricrocin, a siderophore involved in intra-and transcellular iron distribution in Aspergillus fumigatus. Appl. Environ. Microbiol. 75: 4194-4196. https://doi.org/10.1128/AEM.00479-09
  34. Stack D, Neville C, Doyle S. 2007. Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology 153: 1297-1306. https://doi.org/10.1099/mic.0.2006/006908-0
  35. Yun C-S, Motoyama T, Osada H. 2015. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat. Commun. 6: 8758. https://doi.org/10.1038/ncomms9758
  36. Minowa Y, Araki M, Kanehisa M. 2007. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J. Mol. Biol. 368: 1500-1517. https://doi.org/10.1016/j.jmb.2007.02.099
  37. Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. 2011. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39: W362-W367. https://doi.org/10.1093/nar/gkr323
  38. Khayatt BI, Overmars L, Siezen RJ, Francke C. 2013. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS One 8: 10.
  39. Knudsen M, Sondergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CN. 2016. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Bioinformatics 32: 325-329. https://doi.org/10.1093/bioinformatics/btv600
  40. Bachmann BO, Ravel J. 2009. Methods for in silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol. 458: 181-217.
  41. Jegorov A, Haiduch M, Sulc M, Havlicek V. 2006. Nonribosomal cyclic peptides: specific markers of fungal infections. J. Mass Spectrom. 41: 563-576. https://doi.org/10.1002/jms.1042
  42. Jegorov A, Paizs B, Kuzma M, Zabka M, Landa Z, Sulc M, et al. 2004. Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways. J. Mass Spectrom. 39: 949-960. https://doi.org/10.1002/jms.674
  43. Wang B, Kang QJ, Lu YZ, Bai LQ, Wang CS. 2012. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc. Natl. Acad. Sci. USA 109: 1287-1292. https://doi.org/10.1073/pnas.1115983109
  44. Pedras MSC, Irina Zaharia L, Ward DE. 2002. The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59: 579-596. https://doi.org/10.1016/S0031-9422(02)00016-X
  45. Pal S, St. Leger RJ, Wu LP. 2007. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J. Biol. Chem. 282: 8969-8977. https://doi.org/10.1074/jbc.M605927200
  46. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B. 2005. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Biol. 57: 1036-1050.
  47. Xu YQ, Rozco R, Wijeratne EMK, Espinosa-Artiles P, Gunatilaka AAL, Stock SP, Molnar I. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet. Biol. 46: 353-364. https://doi.org/10.1016/j.fgb.2009.03.001
  48. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226. https://doi.org/10.1093/nar/gku1221
  49. Ortiz-Urquiza A, Keyhani NO. 2015. Stress response signaling and virulence: insights from entomopathogenic fungi. Curr. Genet. 61: 239-249. https://doi.org/10.1007/s00294-014-0439-9
  50. Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, Sendino J, et al. 2010. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev. Iberoam. Micol. 27: 155-182. https://doi.org/10.1016/j.riam.2010.10.003
  51. Luo ZB, Li YJ, Mousa J, Bruner S, Zhang YJ, Pei Y, Keyhani NO. 2015. Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana. Environ. Microbiol. 17: 1189-1202. https://doi.org/10.1111/1462-2920.12542
  52. Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P. 2012. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet. Biol. 49: 602-612. https://doi.org/10.1016/j.fgb.2012.06.003
  53. Bayram O, Braus GH. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36: 1-24. https://doi.org/10.1111/j.1574-6976.2011.00285.x
  54. Xu YQ, Wijeratne EMK, Espinosa-Artiles P, Gunatilaka AAL, Molnar I. 2009. Combinatorial mutasynthesis of scrambled beauvericins, cyclooligomer depsipeptide cell migration inhibitors from Beauveria bassiana. Chembiochem 10: 345-354. https://doi.org/10.1002/cbic.200800570
  55. Halo LM, Heneghan MN, Yakasai AA, Song Z, Williams K, Bailey AM, et al. 2008. Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J. Am. Chem. Soc. 130: 17988-17996. https://doi.org/10.1021/ja807052c

Cited by

  1. Direct and Indirect Effect via Endophytism of Entomopathogenic Fungi on the Fitness of Myzus persicae and Its Ability to Spread PLRV on Tobacco vol.12, pp.2, 2017, https://doi.org/10.3390/insects12020089