DOI QR코드

DOI QR Code

Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils

  • Sakkas, Hercules (Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina) ;
  • Papadopoulou, Chrissanthy (Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina)
  • 투고 : 2016.08.10
  • 심사 : 2016.12.14
  • 발행 : 2017.03.28

초록

For centuries, plants have been used for a wide variety of purposes, from treating infectious diseases to food preservation and perfume production. Presently, the increasing resistance of microorganisms to currently used antimicrobials in combination with the appearance of emerging diseases requires the urgent development of new, more effective drugs. Plants, due to the large biological and structural diversity of their components, constitute a unique and renewable source for the discovery of new antibacterial, antifungal, and antiparasitic compounds. In the present paper, the history, composition, and antimicrobial activities of the basil, oregano, and thyme essential oils are reviewed.

키워드

참고문헌

  1. Gurib-Fakim A. 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 27: 1-93. https://doi.org/10.1016/j.mam.2005.07.008
  2. Prabuseenivasan S, Jayakumar M, Ignacimuthu S. 2006. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 6: 39-50. https://doi.org/10.1186/1472-6882-6-39
  3. Valiakos E, Marselos M, Sakellaridis N, Constantinidis T, Skaltsa H. 2015. Ethnopharmacological approach to the herbal medicines of the "antidotes" in Nikolaos Myrepsos' Dynameron. J. Ethnopharmacol. 163: 68-82. https://doi.org/10.1016/j.jep.2015.01.005
  4. Hammer KA, Carson CF, Riley TV. 1999. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86: 985-990. https://doi.org/10.1046/j.1365-2672.1999.00780.x
  5. Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
  6. Lardos A. 2006. The botanical material medica of the Iatrosophikon-a collection of prescriptions from a monastery in Cyprus. J. Ethnopharmacol. 104: 387-406. https://doi.org/10.1016/j.jep.2005.12.035
  7. Malamas M, Marselos M. 1992. The tradition of medicinal plants in Zagori, Epirus (northwestern Greece). J. Ethnopharmacol. 37: 197-203. https://doi.org/10.1016/0378-8741(92)90034-O
  8. Edris A. 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res. 21: 308-323. https://doi.org/10.1002/ptr.2072
  9. Freires IA, Denny C, Benso B, de Alencar SM, Rosalen PL. 2015. Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: a systematic review. Molecules 20: 7329-7358. https://doi.org/10.3390/molecules20047329
  10. Rota C, Carraminana JJ, Burillo J, Herrera A. 2004. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J. Food Protect. 67: 1252-1256. https://doi.org/10.4315/0362-028X-67.6.1252
  11. Suhr KI, Nielsen PV. 2003. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J. Appl. Microbiol. 94: 665-674. https://doi.org/10.1046/j.1365-2672.2003.01896.x
  12. Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  13. Pothier J, Galand N, El Ouali M, Viel C. 2001. Comparison of planar chromatographic methods (TLC, OPLC, AMD) applied to essential oils of wild thyme and seven chemotypes of thyme. Il Farmaco 5-7: 505-511.
  14. Anthony JP, Fyfe L, Smith H. 2005. Plant active components-a resource for antiparasitic agents? Trends Parasitol. 21: 462-468. https://doi.org/10.1016/j.pt.2005.08.004
  15. Aburjai T, Natsheh F. 2003. Plants used in cosmetics. Phytother. Res. 17: 987-1000. https://doi.org/10.1002/ptr.1363
  16. Wallace RJ. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63: 621-629. https://doi.org/10.1079/PNS2004393
  17. Cooke B, Ernst E. 2000. Aromatherapy: a systematic review. Br. J. Gen. Pract. 50: 493-496.
  18. Seymour R. 2003. Additional properties and uses of essential oils. J. Clin. Periodontol. 30: 19-21.
  19. Chorianopoulos N, Kalpoutzakis E, Aligiannis N, Mitaku S, Nychas G-J, Haroutounian S. 2004. Essential oils of Satureja, Origanum and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. J. Agric. Food Chem. 52: 8261-8267. https://doi.org/10.1021/jf049113i
  20. Cosentino S, Tuberoso SIG, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F. 1999. In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 29: 130-135. https://doi.org/10.1046/j.1472-765X.1999.00605.x
  21. Holley R, Patel D. 2005. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22: 273-292. https://doi.org/10.1016/j.fm.2004.08.006
  22. Marino M, Bersani C, Comi G. 2001. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 67: 187-195. https://doi.org/10.1016/S0168-1605(01)00447-0
  23. Smith-Palmer A, Stewart J, Fyfe L. 1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 26: 118-122. https://doi.org/10.1046/j.1472-765X.1998.00303.x
  24. Lang G, Buchbauer G. 2012. A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr. J. 27: 13-39. https://doi.org/10.1002/ffj.2082
  25. Lambert RJV, Skandamis PN, Coote PJ, Nychas G-JE. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91: 453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x
  26. Guynot ME, Ramos AG, Seto L, Purroy P, Sanchis V, Marin S. 2003. Antifungal activities of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products. J. Appl. Microbiol. 94: 893-899. https://doi.org/10.1046/j.1365-2672.2003.01927.x
  27. Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG. 2003. Activity and mechanisms of action of selected biocidal agents on gram-positive and-negative bacteria. J. Appl. Microbiol. 94: 240-247. https://doi.org/10.1046/j.1365-2672.2003.01825.x
  28. Sikkema J, De Bont J, Poolman B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201-222.
  29. Si W, Gong J, Tsao R, Zhou T, Yu H, Poppe C, et al. 2006. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 100: 296-305. https://doi.org/10.1111/j.1365-2672.2005.02789.x
  30. Radulovic N, Blagojevic P, Miltojevic A. 2013. ${\alpha}$-Linalool -a marker compound of forged/synthetic sweet basil (Ocimum basilicum L.) essential oils. J. Sci. Food Agric. 93: 3292-3303. https://doi.org/10.1002/jsfa.6175
  31. Rattanachaikunsopon P, Phumkhachorn P. 2010. Antimicrobial activity of basil (Ocimum basilicum) oil against Salmonella enteritidis in vitro and in food. Biosci. Biotechnol. Biochem. 74: 1200-1204. https://doi.org/10.1271/bbb.90939
  32. Suppakul P, Miltz J, Sonneveld K, Bigger S. 2003. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 51: 3197-3207. https://doi.org/10.1021/jf021038t
  33. Schulz H, Schrader B, Quilitzsch R, Pfeffer S, Kruger H. 2003. Rapid classification of basil chemotypes by various vibrational spectroscopy methods. J. Agric. Food Chem. 51: 2475-2481. https://doi.org/10.1021/jf021139r
  34. Trevisan MTS, Silva MGV, Pfundstein B, Spiegelhalder B, Owen RW. 2006. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus Ocimum. J. Agric. Food Chem. 54: 4378-4382. https://doi.org/10.1021/jf060181+
  35. Vieira R, Grayer R, Paton A. 2003. Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry 63: 555-567. https://doi.org/10.1016/S0031-9422(03)00143-2
  36. Tilebeni HG. 2011. Review to basil medicinal plant. Int. J. Agron. Plant Prod. 2: 5-9.
  37. Lachowicz KJ, Jones GP, Briggs DR, Bienvenu FE, Wan J, Wilcock A, Coventry MJ. 1998. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora. Lett. Appl. Microbiol. 26: 209-214. https://doi.org/10.1046/j.1472-765X.1998.00321.x
  38. Opalchenova G, Obreshkova D. 2003. Comparative studies on the activity of basil-an essential oil from Ocimum basilicum L.- against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods 54: 105-110. https://doi.org/10.1016/S0167-7012(03)00012-5
  39. Lewinsohn E, Ziv-Raz I, Dudai N, Tadmor Y, Lastochkin E, Larkov O, et al. 2000. Biosynthesis of estragole and methyleugenol in sweet basil (Ocimum basilicum L.). Developmental and chemotypic association of allylphenol O-methyltransferase activities. Plant Sci. 160: 27-35. https://doi.org/10.1016/S0168-9452(00)00357-5
  40. Villalobos-Pascual MJ, Acosta-Ballesta MC. 2003. Chemical variation in an Ocimum basilicum gerplasm collection and activity of the essential oils on Callosobruchus maculatus. Biochem. Syst. Ecol. 31: 673-679. https://doi.org/10.1016/S0305-1978(02)00183-7
  41. Kathirvel P, Ravi S. 2012. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts. Nat. Prod. Res. 26: 1112-1128. https://doi.org/10.1080/14786419.2010.545357
  42. Matiz G, Osorio M, Camacho F, Atencia M, Herazo J. 2012. Effectiveness of antimicrobial formulations for acne based on orange (Citrus sinensis) and sweet basil (Ocimum basilicum L.) essential oils. Biomedica 32: 125-133.
  43. Karamaouna F, Kimbaris A, Michaelakis A, Papachristos D, Polissiou M, Papatsakona P, Tsora E. 2013. Insecticidal activity of plant essential oils against the Vine Mealybug, Planococcus ficus. J. Insect Sci. 13: 142.
  44. Dulger B. 2005. An investigation on antimicrobial activity of endemic Origanum solymicum and Origanum bilgeri from Turkey. Afr. J. Tradit. Complement. Altern. Med. 2: 259-263.
  45. Kokkini S, Karousou R, Dardioti A, Krigas N, Lanaras T. 1997. Autumn essential oils of Greek oregano. Phytochemistry 44: 883-886. https://doi.org/10.1016/S0031-9422(96)00576-6
  46. Gounaris Y, Skoula M, Fournaraki C, Drakakaki G, Makris A. 2002. Comparison of essential oils and genetic relationship of Origanum ${\times}$ intercedens to its parental taxa in the island of Crete. Biochem. Syst. Ecol. 30: 249-258. https://doi.org/10.1016/S0305-1978(01)00079-5
  47. Burt S, Vlielander R, Haagsman H, Veldhuizen E. 2005. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 68: 919-926. https://doi.org/10.4315/0362-028X-68.5.919
  48. Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou B. 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49: 4168-4170. https://doi.org/10.1021/jf001494m
  49. de Falco E, Roscigno C, Landolfi S, Scandolera E. 2014. Growth, essential oil characterization, and antimicrobial activity of three wild types of oregano under cultivation condition in Southern Italy. Ind. Crops Prod. 62: 242-249. https://doi.org/10.1016/j.indcrop.2014.08.037
  50. Baydar H, Sagdic O, Ozkan G, Karadogan T. 2003. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control 15: 169-172. https://doi.org/10.15358/0935-0381-2003-3-4-169
  51. Alma M, Mavi A, Yildirim A, Digrak M, Hirata T. 2003. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol. Pharm. Bull. 26: 1725-1729. https://doi.org/10.1248/bpb.26.1725
  52. Sagdic O. 2003. Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT Food Sci. Technol. 36: 467-473. https://doi.org/10.1016/S0023-6438(03)00037-9
  53. Vagi E, Simandi B, Suhajda A, Hethelyi E. 2005. Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Res. Int. 38: 51-57. https://doi.org/10.1016/j.foodres.2004.07.006
  54. Nostro A, Blanco A, Cannatelli M, Enea V, Flamini G, Morelli I, et al. 2004. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol. Lett. 230: 191-195. https://doi.org/10.1016/S0378-1097(03)00890-5
  55. McKay D, Blumberg J. 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 20: 519-530. https://doi.org/10.1002/ptr.1900
  56. Cetin H, Cilek J, Aydin L, Yanikoglu A. 2009. Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus(Acari: Ixodidae). Vet. Parasitol. 160: 359-361. https://doi.org/10.1016/j.vetpar.2008.11.009
  57. Mith H, Dure R, Delcenserie V, Zhiri A, Daube G, Clinquart A. 2014. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2: 403-416. https://doi.org/10.1002/fsn3.116
  58. Nabavi SM, Marchese A, Izadi M, Curti V, Daglia M, Nabavi SF. 2015. Plants belonging to the genous Thymus as antibacterial agents: from farm to pharmacy. Food Chem. 173: 339-347. https://doi.org/10.1016/j.foodchem.2014.10.042
  59. Badi HN, Yazdani D, Ali SM, Nazari F. 2004. Effects of spacing and harvesting time on herbage yield and quality/ quantity of oil in thyme, Thymus vulgaris L. Ind. Crop. Prod. 19: 231-236. https://doi.org/10.1016/j.indcrop.2003.10.005
  60. Senatore F. 1996. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) in Campania (Southern Italy) J. Agric. Food Chem. 44: 1327-1332. https://doi.org/10.1021/jf950508z
  61. Guillen MD, Manzanos MJ. 1998. Study of the composition of the different parts of a Spanish Thymus vulgaris L. plant. Food Chem. 63: 373-383. https://doi.org/10.1016/S0308-8146(98)00013-2
  62. Ben-Jabeur M, Ghabri E, Myriam M, Hamada W. 2015. Thyme essential oil as a defense inducer of tomato against gray molf and Fusarium wilt. Plant Physiol. Biochem. 94: 35-40. https://doi.org/10.1016/j.plaphy.2015.05.006
  63. Rasooli I, Rezaei MB, Allameh A. 2006. Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int. J. Infect. Dis. 10: 236-241. https://doi.org/10.1016/j.ijid.2005.05.006
  64. Schulz H, Quilitzsch R, Kruger H. 2003. Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy. J. Mol. Struct. 661-662: 299-306. https://doi.org/10.1016/S0022-2860(03)00517-9
  65. Yamazaki K, Yamamoto T, Kawai Y, Inoue N. 2004. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol. 21: 283-289. https://doi.org/10.1016/j.fm.2003.08.009
  66. Burt SA, Reinders RD. 2003. Antibacterial activity of selected plant essential oils against Escherichia coli O157-H7. Lett. Appl. Microbiol. 36: 162-167. https://doi.org/10.1046/j.1472-765X.2003.01285.x
  67. Valero M, Salmeron MC. 2003. Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. Int. J. Food Microbiol. 85: 73-81. https://doi.org/10.1016/S0168-1605(02)00484-1
  68. Saccheti G, Medici A, Maietti S, Radice M, Muzzoli M, Manfredini S, et al. 2004. Composition and functional properties of the essential oil of Amazonian Basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J. Agric. Food Chem. 52: 3486-3491. https://doi.org/10.1021/jf035145e
  69. Sokmen M, Serkedjieva J, Daferera D, Gulluce M, Polissiou M, Tepe B, et al. 2004. In vitro antioxidant, antimicrobial and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J. Agric. Food Chem. 52: 3309-3312. https://doi.org/10.1021/jf049859g
  70. Bozin B, Dukic-Mimica N, Simin N, Anackov G. 2006. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 54: 1822-1828. https://doi.org/10.1021/jf051922u
  71. Schelz Z, Molnar J, Hohmann J. 2006. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77: 279-285. https://doi.org/10.1016/j.fitote.2006.03.013
  72. Sakkas H, Gousia P, Economou V, Sakkas V, Petsios S, Papadopoulou C. 2016. In vitro antimicrobial activity of five essential oils on multidrug resistant gram-negative clinical isolates. J. Intercult. Ethnopharmacol. 5: 212-218. https://doi.org/10.5455/jice.20160331064446
  73. Cavaleiro C, Pinto E, Goncalves MJ, Salgueiro L. 2006. Antifungal activity of Juniperus against dermatophyte, Aspergillus and Candida strains. J. Appl. Microbiol. 100: 1333-1338. https://doi.org/10.1111/j.1365-2672.2006.02862.x
  74. Giordani R, Regli P, Kaloustian J, Mikail C, Abou L, Portugal H. 2004. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 18: 990-995. https://doi.org/10.1002/ptr.1594
  75. Tampieri MP, Galuppi R, Macchioni F, Carelle MS, Falcioni L, Cioni PL, Morelli I. 2005. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia 159: 339-345. https://doi.org/10.1007/s11046-003-4790-5
  76. Pina-Vaz C, Goncalves-Rodrigues A, Pinto E, Costa-de Oliveira S, Tavares C, Salgueiro L, et al. 2004. Antifungal activity of thymus oils and their major components. J. Eur. Acad. Dermatol. Venereol. 18: 73-78. https://doi.org/10.1111/j.1468-3083.2004.00886.x
  77. Salgueiro LR, Cavaleiro C, Pinto E, Pina-Vaz C, Rodrigues AG, Palmeira A, et al. 2003. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species. Planta Med. 69: 871-874. https://doi.org/10.1055/s-2003-43203
  78. Pinto E, Pina-Vaz C, Salgueiro L, Goncalves MJ, Costa-de Oliveira S, Cavaleiro C, et al. 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 55: 1367-1373. https://doi.org/10.1099/jmm.0.46443-0
  79. Soliman KM, Badeaa RI. 2002. Effect of oil extracted from some medicinal plants of different mycotoxigenic fungi. Food Chem. Toxicol. 40: 1669-1675. https://doi.org/10.1016/S0278-6915(02)00120-5
  80. Sakkas H, Gousia P, Economou V, Petsios S, Papadopoulou C. 2016. Antifungal activity of four essential oils against Candida clinical isolates. Asian J. Ethnopharmacol. Med. Foods 2: 22-25.

피인용 문헌

  1. Biological Activities of Three Essential Oils of the Lamiaceae Family vol.4, pp.3, 2017, https://doi.org/10.3390/medicines4030063
  2. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.02329
  3. Homologous and Heterologous Adaptation of Listeria spp. to Essential Oils of Condiment Plants vol.8, pp.8, 2017, https://doi.org/10.4236/aim.2018.88043
  4. Antimicrobial activity of six essential oils against Burkholderia cepacia complex: insights into mechanism(s) of action vol.13, pp.1, 2017, https://doi.org/10.2217/fmb-2017-0121
  5. Ethnoveterinary perspectives and promising future vol.6, pp.1, 2018, https://doi.org/10.1016/j.ijvsm.2018.04.001
  6. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite vol.8, pp.5, 2018, https://doi.org/10.3390/nano8050291
  7. Origanum spp.: an update of their chemical and biological profiles vol.17, pp.4, 2017, https://doi.org/10.1007/s11101-018-9566-0
  8. In vitro effects of Origanum vulgare leaf extracts on gilthead seabream (Sparus aurata L.) leucocytes, cytotoxic, bactericidal and antioxidant activities vol.79, pp.None, 2017, https://doi.org/10.1016/j.fsi.2018.05.005
  9. Streptococcus mutans와 Porphyromonas gingivalis에 대한 Basil Oil의 항균효과 vol.6, pp.3, 2017, https://doi.org/10.15268/ksim.2018.6.3.131
  10. Antibacterial Efficacy of Commercially Available Essential Oils Tested Against Drug-Resistant Gram-Positive Pathogens vol.8, pp.11, 2018, https://doi.org/10.3390/app8112201
  11. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils vol.5, pp.4, 2017, https://doi.org/10.3390/medicines5040112
  12. Alternaria Spots in Tomato Leaves Differently Delayed by Four Plant Essential Oil Vapours vol.24, pp.4, 2018, https://doi.org/10.5423/rpd.2018.24.4.292
  13. Electrospun essential oil-polycaprolactone nanofibers as antibiofilm surfaces against clinical Candida tropicalis isolates vol.41, pp.4, 2017, https://doi.org/10.1007/s10529-019-02660-y
  14. Promising antifungal activity of Croton tricolor stem essential oil against Candida yeasts vol.31, pp.3, 2017, https://doi.org/10.1080/10412905.2018.1539416
  15. Culture Dependent and Independent Analysis of Potential Probiotic Bacterial Genera and Species Present in the Phyllosphere of Raw Eaten Produce vol.20, pp.15, 2017, https://doi.org/10.3390/ijms20153661
  16. Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis Vinifera) and primes plant immunity mechanisms vol.14, pp.9, 2017, https://doi.org/10.1371/journal.pone.0222854
  17. GC/MS-Olfactometric Characterization of the Volatile Compounds, Determination Antimicrobial and Antioxidant Activity of Essential Oil from Flowers of Calendula (Calendula officinalis L.) vol.22, pp.6, 2017, https://doi.org/10.1080/0972060x.2019.1703829
  18. The effect of different preparation methods on the development of chitosan/thyme oil/montmorillonite nanocomposite active packaging films vol.44, pp.2, 2017, https://doi.org/10.1111/jfpp.14327
  19. Evaluation of monoterpene-cyclodextrin complexes as bacterial growth effective hurdles vol.108, pp.None, 2017, https://doi.org/10.1016/j.foodcont.2019.106814
  20. Potential synergistic antimicrobial efficiency of binary combinations of essential oils against Bacillus cereus and Paenibacillus amylolyticus-Part A vol.141, pp.None, 2020, https://doi.org/10.1016/j.micpath.2020.104008
  21. Evaluation of the Preservative Properties of Origanum elongatum Essential Oil in a Topically Applied Formulation Under a Challenge Test vol.18, pp.2, 2017, https://doi.org/10.3166/phyto-2018-0067
  22. Study of Morphological Nature of Coronavirus: Causes and Prevention vol.14, pp.1, 2020, https://doi.org/10.22207/jpam.14.spl1.34
  23. Synergism of Antimicrobial and Anti-Adhesive Activity of Nocardia vaccinii IMV B-7405 Surfactants in a Mixture with Essential Oils vol.82, pp.4, 2020, https://doi.org/10.15407/microbiolj82.04.031
  24. A Pilot Survey on Hygienic–Sanitary Characteristics of Ready-To-Eat Sauces and Pesto vol.17, pp.14, 2017, https://doi.org/10.3390/ijerph17145005
  25. Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.) vol.10, pp.16, 2017, https://doi.org/10.3390/app10165503
  26. Using Medicinal Plants in Valmalenco (Italian Alps): From Tradition to Scientific Approaches vol.25, pp.18, 2020, https://doi.org/10.3390/molecules25184144
  27. Modeling dependence of growth inhibition of Salmonella Typhimurium and Listeria monocytogenes by oregano or thyme essential oils on the chemical composition of minced pork vol.40, pp.5, 2020, https://doi.org/10.1111/jfs.12818
  28. Turmeric/oregano formulations for treatment of diabetic ulcer wounds vol.46, pp.10, 2017, https://doi.org/10.1080/03639045.2020.1811305
  29. The antibacterial properties of phenolic isomers, carvacrol and thymol vol.60, pp.18, 2017, https://doi.org/10.1080/10408398.2019.1675585
  30. Extraction Techniques and Analytical Methods for Characterization of Active Compounds in Origanum Species vol.25, pp.20, 2017, https://doi.org/10.3390/molecules25204735
  31. Ginkgetin: A natural biflavone with versatile pharmacological activities vol.145, pp.None, 2020, https://doi.org/10.1016/j.fct.2020.111642
  32. Evaluation of the use of lactic acid bacteria and Thymus vulgaris essential oil on Suffolk and Ile de France lamb breed (MuscuIus gluteus) quality parameters vol.55, pp.11, 2017, https://doi.org/10.1111/ijfs.14679
  33. In vitro anticoccidial activity of thymol, carvacrol, and saponins vol.99, pp.11, 2017, https://doi.org/10.1016/j.psj.2020.07.035
  34. Design of biopolymer carriers enriched with natural emulsifiers for improved controlled release of thyme essential oil vol.85, pp.11, 2017, https://doi.org/10.1111/1750-3841.15499
  35. A cinnamaldehyde-based formulation as an alternative to sodium hypochlorite for post-harvest decontamination of citrus fruit vol.45, pp.6, 2017, https://doi.org/10.1007/s40858-020-00338-9
  36. Antioxidant and Antimicrobial Activity of Basil, Thyme and Tarragon Used in Meat Products vol.11, pp.11, 2017, https://doi.org/10.4236/aim.2021.1111043
  37. Antimicrobial Effects of Essential Oils on Oral Microbiota Biofilms: The Toothbrush In Vitro Model vol.10, pp.1, 2017, https://doi.org/10.3390/antibiotics10010021
  38. Natural Plant-Derived Chemical Compounds as Listeria monocytogenes Inhibitors In Vitro and in Food Model Systems vol.10, pp.1, 2017, https://doi.org/10.3390/pathogens10010012
  39. Actividad antibacteriana in vitro de extracto etanólico crudo de las hojas de Origanum vulgare, frente Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853 y Escherichia coli ATC vol.12, pp.1, 2017, https://doi.org/10.36610/j.jsars.2021.120100021
  40. In vitro antibacterial activity of crude ethanolic extract from the leaves of Origanum vulgare, against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25 vol.12, pp.1, 2017, https://doi.org/10.36610/j.jsars.2021.120100021x
  41. Effect of clinoptilolite on structure and drug release behavior of chitosan/thyme oil γ‐Cyclodextrin inclusion compound hydrogels vol.138, pp.6, 2017, https://doi.org/10.1002/app.49822
  42. Influence of Agronomic Practice on Total Phenols, Carotenoids, Chlorophylls Content, and Biological Activities in Dry Herbs Water Macerates vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041047
  43. Antioxidant and Antibacterial Activity of Caprylic Acid Vanillyl Ester Produced by Lipase-Mediated Transesterification vol.31, pp.2, 2017, https://doi.org/10.4014/jmb.2010.10018
  44. Antibiofilm effects of Thymus vulgaris and Hyptis spicigera essential oils on cariogenic bacteria vol.16, pp.4, 2017, https://doi.org/10.2217/fmb-2020-0181
  45. Aloe vera gel microcapsules and essential oils of thyme and oregano incorporated in spreadable goat cheese: impact on its microbiological, physicochemical, and sensory characteristics during storage vol.49, pp.1, 2017, https://doi.org/10.15835/nbha49112001
  46. Development of a herbal mouthwash containing a mixture of essential oils and plant extracts and in vitro testing of its antimicrobial efficiency against the planktonic and biofilm-enclosed cariogenic vol.37, pp.4, 2017, https://doi.org/10.1080/08927014.2021.1924693
  47. Smart Coatings Prepared via MAPLE Deposition of Polymer Nanocapsules for Light-Induced Release vol.26, pp.9, 2017, https://doi.org/10.3390/molecules26092736
  48. Essential oil chemical composition, antimicrobial, anticancer, and antioxidant effects of Thymus convolutus Klokov in Turkey vol.76, pp.5, 2017, https://doi.org/10.1515/znc-2020-0070
  49. Action of Carvacrol on Parascaris sp. and Antagonistic Effect on Nicotinic Acetylcholine Receptors vol.14, pp.6, 2021, https://doi.org/10.3390/ph14060505
  50. Perspectives on the Combined Effects of Ocimum basilicum and Trifolium pratense Extracts in Terms of Phytochemical Profile and Pharmacological Effects vol.10, pp.7, 2017, https://doi.org/10.3390/plants10071390
  51. Peppermint Essential Oil Suppresses Geotrichum citri-aurantii Growth by Destructing the Cell Structure, Internal Homeostasis, and Cell Cycle vol.69, pp.27, 2017, https://doi.org/10.1021/acs.jafc.1c02918
  52. The Inhibition of Non-albicans Candida Species and Uncommon Yeast Pathogens by Selected Essential Oils and Their Major Compounds vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164937
  53. The Toxicity of Essential Oils From Three Origanum Species Against Head Louse, Pediculus humanus capitis vol.66, pp.3, 2021, https://doi.org/10.1007/s11686-021-00370-y
  54. The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus vol.10, pp.9, 2017, https://doi.org/10.3390/pathogens10091207
  55. Propolis extract and oregano essential oil as biofungicides for garlic seed cloves: in vitro assays and synergistic interaction against Penicillium allii vol.131, pp.4, 2021, https://doi.org/10.1111/jam.15081
  56. Relationship between auxins and cytokinins in the growth and organogenesis of Ocimum basilicum L. ‘Grecco a Palla’ vol.101, pp.5, 2017, https://doi.org/10.1139/cjps-2020-0067
  57. The evidence of health benefits and food applications of Thymus vulgaris L. vol.117, pp.None, 2021, https://doi.org/10.1016/j.tifs.2021.11.010
  58. Evaluation of Wound Healing Potential of Novel Hydrogel Based on Ocimum basilicum and Trifolium pratense Extracts vol.9, pp.11, 2017, https://doi.org/10.3390/pr9112096
  59. A novel bis(pyrazolyl)methane compound as a potential agent against Gram-positive bacteria vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95609-z
  60. Bacteria-specific pro-photosensitizer kills multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa vol.4, pp.1, 2017, https://doi.org/10.1038/s42003-021-01956-y
  61. Properties analysis of crosslinked chitosan microcapsules by multiple emulsification method vol.8, pp.1, 2017, https://doi.org/10.1186/s40691-020-00230-9
  62. Zein-Based Films Containing Monolaurin/Eugenol or Essential Oils with Potential for Bioactive Packaging Application vol.23, pp.1, 2017, https://doi.org/10.3390/ijms23010384
  63. Active cellulose acetate‐oregano essential oil films to conservation of hamburger buns: Antifungal, analysed sensorial and mechanical properties vol.35, pp.2, 2022, https://doi.org/10.1002/pts.2618
  64. A three-step approach to assess efficacy of alternative chemical treatments to preserve fresh fruit juices: Application to pineapple (Ananas comosus ‘Queen Victoria’) vol.155, pp.None, 2017, https://doi.org/10.1016/j.lwt.2021.112959