DOI QR코드

DOI QR Code

우리나라 강우자료의 무차원 L-moment ratio를 통한 Burr XII 분포의 수문학적 적용성 검토

Applicability of the Burr XII distribution through dimensionless L-moment ratio of rainfall data in South Korea

  • 서정호 (연세대학교 토목환경공학과) ;
  • 신홍준 (연세대학교 토목환경공학과) ;
  • 안현준 (연세대학교 토목환경공학과) ;
  • 허준행 (연세대학교 토목환경공학과)
  • Seo, Jungho (School of Civil and Environmental Engineering, Yonsei University) ;
  • Shin, Hongjoon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Ahn, Hyunjun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2017.02.13
  • 심사 : 2017.03.06
  • 발행 : 2017.03.31

초록

수문통계분야에서는 극치 사상을 해석하기 위해 generalized extreme value (GEV), generalized logistic (GLO), Gumbel (GUM) 모형과 같은 다양한 극치분포들을 사용하여 왔다. 특히 우리나라 강우 사상의 경우 다양한 극치분포 모형 중 GEV 분포와 Gumbel 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 각 분포 모형이 나타낼 수 있는 통계적 특성에 한계를 가지고 있다. 이러한 점에서 두 개의 형상매개변수를 가지고 있어 분포 모형이 나타낼 수 있는 통계적 특성의 범위가 넓은 분포의 적용이 필요하다. 이에 본 연구에서는 두 개의 형상매개변수를 가지고 있어 다양한 통계적 특성을 표현할 수 있는 Burr XII 분포와 우리나라 620개 지점의 강우자료의 무차원 L-moment 비를 이용하여 우리나라 강우자료의 수문학적 적용성을 검토하였다. 이를 위해 Burr XII 분포의 L-moment ratio인 L-skewness와 L-kurtosis를 유도하고 그 관계식을 이용하여 L-moment diagram을 작성하고 620개 지점이 해당 영역에 포함되는 정도를 검토하여 그 적용성을 살펴보았다. 그 결과 L-skewness가 L-kurtosis보다 상대적으로 큰 한강 유역에 해당하는 지점들에 대한 Burr XII 분포의 적용성이 우수한 것으로 나타났으며, 이는 일반적으로 많이 사용되는 GEV 또는 Gumbel 분포를 대체할 수 있는 분포가 될 가능성을 보였다고 할 수 있다.

In statistical hydrology, various extreme distributions such as the generalized extreme value (GEV), generalized logistic (GLO) and Gumbel (GUM) models have been widely used to analyze the extreme events. In the case of rainfall events in South Korea, the GEV and Gumbel distributions are known to be appropriate among various extreme distribution models. However, the proper probability distribution model may be different depending on the type of extreme events, rainfall duration, region, and statistical characteristics of extreme events. In this regard, it is necessary to apply a wide range of statistical properties that can be represented by the distribution model because it has two shape parameters. In this study, the statistical applicability of rainfall data is analyzed using the Burr XII distribution and the dimensionless L-moment ratio for 620 stations in South Korea. For this purpose, L-skewness and L-kurtosis of the Burr XII distribution are derived and L-moment ratio diagram is drawn and then the applicability of 620 stations was analyzed. As a result, it is found that the Burr XII distribution for the stations of the Han River basin in which L-skewness is relatively larger than L-kurtosis is appropriate, It is possibility of replacing the distribution of commonly used Gumbel or GEV distributions. Therefore, the Burr XII model can be replaced as an appropriate probability model in this basin.

키워드

참고문헌

  1. Alexandersson, H., Forland, E. J., Helminen, J., Sjoblom, N., and Tveito, O. E. (2001). Extreme value analysis in the Nordic countries. Norwegian Meteorological Institute.
  2. Allan, R. P., and Soden, B. J. (2008). "Atmospheric warming and the amplification of precipitation extremes." Science, Vol. 321, pp. 1481-1484. https://doi.org/10.1126/science.1160787
  3. Burr, I. W. (1942). "Cumulative frequency functions." The Annals of Mathematical Statistics, Vol. 13, pp. 215-232. https://doi.org/10.1214/aoms/1177731607
  4. Burr, I. W., and Cislak, P. J. (1968). "On a general system of distribution: I. Its curve characteristics; II. The sample median." Journal of the American Statistical Association, Vol. 63, No. 322, pp. 627-638. https://doi.org/10.2307/2284033
  5. Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, T., Jones., Kolli, R. K., Kwon, W. K., Laprise, R., Magana Rueda, V., Mearns, L., Menendez, C. G., Raisanen, J., Rinke, A., Sarr, A., and Whetton, P. (2007). Regional climate projections, In climate change 2007: The physical basis. Contribution of working group I to the fourth assessment report of the Intergovermental Panel on Climate Change (IPCC), Cambrdge University Press, pp. 852-860.
  6. Embrechts, P., Kluppelberg, C., and Mikosch, T. (1997). Modelling extremal events for insurance and finance. Springer-Verlag, Berlin, Germany.
  7. Ganora, D., and Laio, F. (2015). "Hydrological applications of the Burr distribution : Practical method for parameter estimation." Journal of Hydrological Engineering, Vol. 20, Issue. 11, 10.1061/(ASCE) HE.1943-5584.0001203, 04015024.
  8. Greenwood, J., Landwehr, J., Matalas, N., and Wallis, J. (1979). "Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form." Water Resources Research, Vol. 15, No. 5, pp. 1049-1054. https://doi.org/10.1029/WR015i005p01049
  9. Hao, Z., and Singh, V. P. (2009). "Entropy-based parameter estimation for extended Burr XII distribution." Stochastic Environmental Research and Risk Assessment, Vol. 23, No. 8, pp. 1113-1122. https://doi.org/10.1007/s00477-008-0286-7
  10. Heo, J. H., and Kim, K. D. (1995). "A study of the selection of probability distribution for rainfall data in Korea." Journal of the Engineering Research Institute, Yonsei University, Vol. 27, No. 2, pp. 193-200.
  11. Heo, J. H., Lee, Y. S., Shin, H. J., and Kim, K. D. (2007). "Application of regional rainfall frequency analysis in South Korea(I): Rainfall quantile estimation." Journal of the Korean Society of Civil Engineering, Vol. 27, No. 2B, pp. 101-111.
  12. Heo, J. H., Shin, H. J., and Shin, J. Y. (2012). "The newest version development status of FARD, Korean representative frequency analysis program." Magazine of Korea Water Resources Association, Vol. 45, No. 1, pp. 96-99.
  13. Hosking, J., Wallis, J., and Wood, E. (1985). "An appraisal of the regional flood frequency procedure in the UK Flood Studier Report." Hydrological Sciences Journal, 30, pp. 85-109. https://doi.org/10.1080/02626668509490973
  14. Hosking, J., and Wallis, J. (1997). Regional frequency analysis: An approach based on L-moments. Cambridge University Press, New York.
  15. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (2001). Climate change 2001: The scientific basics. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change(IPCC). Cambridge University Press, Cambridge, p. 881.
  16. Hwang, P. S., Park, J. H., Shim, M. P., and Choi, S. A. (2006). "Effect analysis of flood control of Yeoju due to heavy rain in July 2006." Magazine of Korea Water Resources Association, Vol 40, No. 4, pp. 48-55.
  17. Institute of Hydrology (IH, 1999). Flood Estimation Handbook.
  18. Kim, D. Y., Lee, S. H., Hong, Y. J., Lee, E. J., and Im, S. J. (2010). "The determination of probability distribution of annual, seasonal and monthly precipitation in Korea." Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 2, pp. 83-94. https://doi.org/10.5532/KJAFM.2010.12.2.083
  19. Kim, K. D., Heo, J. H., and, Cho, W. C. (1996). "The selection of appropriate probability distributions for annual maximum rainfall data." KSCE Journal of Civil Engineering, Vol. 16, No. 2, pp. 335-344.
  20. Kim, K. D., Nam, W. S., and Heo, J. H. (2004). "Introduction to regional frequency analysis." Korea Infrastructure Safety Corporation.
  21. Kim, O. Y., Wang, B., and Sin, S. H. (2013). "How do weather characteristics change in a warming climate?" Climate Dynamics, doi: 10.1007/s00382-013-1795-8.
  22. Klugman, S. A. (1986). Loss distributions. Proceedings of symposia in Applied Mathematics: Actuarial Mathematics. Vol. 35, pp. 31-55.
  23. Landwehr, J., Matalas, N., and Wallis, J. (1979). "Probability weighted moments compared with same traditional techniques in estimating Gumbel parameters and quantiles." Water Resources Research, Vol. 21, No. 12, pp. 1055-1064.
  24. Lee, C. H., Ahn, J. H., and Kim, T. W. (2010). "Evaluation of probability rainfalls estimated from non-stationary rainfall frequency analysis." Journal of Korea Water Resources Association, Vol. 43, No. 2, pp. 187-199. https://doi.org/10.3741/JKWRA.2010.43.2.187
  25. Lee, D. J., and Heo, J. H. (2001). "Frequency analysis of daily rainfall in Han River basin based on regional L-moments algorithm." Journal of Korea Water Resources Association, Vol. 34, No. 2, pp. 119-130.
  26. Lee, J. J., Lee, J. S., Kim, B. I., and Park, J. Y. (2000a). "Derivation of probable rainfall formula of individual zone based on the representative probability distribution." Journal of Korea Water Resources Association, Vol. 3, No. S1, pp. 124-129.
  27. Lee, J. Y., Park, D. H., Shin, J. Y., and Kim, T. W. (2016). "Estimating design floods for ungauged basins in the geum-river basin through regional flood frequency analysis using L-moments method." Journal of Korea Water Resources Association, Vol, 49, No. 8, pp. 645-656. https://doi.org/10.3741/JKWRA.2016.49.8.645
  28. Lee, S. H., Song, K. H., Maeng, S. J., Ryoo, K. S., and Jee, H. K. (2000b). "Derivation of design floods by the probability weighted moments in the Wakeby distribution." Journal of the Korean Society of Agricultural Engineers. Vol. 42, No. 6, pp. 63-71.
  29. Lindsay, S. R., Wood, G. R., and Woollons, R. C. (1996). "Modelling the diameter distribution of forest standes using the Burr distribution." Journal of Applied Statistics, Vol. 23, No. 6, pp. 609-620. https://doi.org/10.1080/02664769623973
  30. Maeng, S. J., Lee, S. H., Lee, H. G., Ryoo, K. S., and Song, G. H. (2006). "Flood frequency analysis by Wakeby and kappa distributions using L-moments." Journal of the Korean Society of Agricultural Engineers, Vol. 48, No. 5, pp. 17-27. https://doi.org/10.5389/KSAE.2006.48.5.017
  31. Nam, Y. S., and Kim, D. K. (2015). "Geographical impact on the annual maximum rainfall in Korea peninsula and determination of the optimal probability density function." Journal of Wetlands Research, Vol. 17, No. 3, pp. 251-263. https://doi.org/10.17663/JWR.2015.17.3.251
  32. Natural Environment Research Council (NERC) (1975). Flood Studies Report: Vol. 1 Hydrological Studies. London.
  33. Oh, U. S. (2001). Estimation of population for Kappa distribution applied rainfall distribution. Master dissertation, Paper in Chonnam National University.
  34. Rodriguez, R. (1977). "A guide to the Burr type XII distributions." Biometrika. Vol. 64, No. 1, pp. 129-134. https://doi.org/10.1093/biomet/64.1.129
  35. Seocho-Gu (2011). Report on pending work report of flood damage recovery in 2011. pp. 1.
  36. Shao, Q. (2000). "Estimation for hazardous concentrations based on NOEC toxicity data: an alternative approach." Environmetrics. Vol. 11, No. 5, pp. 583-595. https://doi.org/10.1002/1099-095X(200009/10)11:5<583::AID-ENV456>3.0.CO;2-X
  37. Shao, Q. (2004). "Notes on maximum likelihood estimation for the three-parameter Burr XII distribution." Computational Statistics and Data Analysis, Vol, No. 3, pp. 675-687.
  38. Shao, Q., and Zhou, X. (2004). "A new parametric model for survival data with long-term survivors." Statistics in Medicine, Vol. 23, No. 22, pp. 3525-3543. https://doi.org/10.1002/sim.1899
  39. Shao, Q., Wong, H., Xia, J., and Ip, W. (2004). "Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis." Hydrological Sciences Journal, Vol. 49, No. 4, pp. 685-702. https://doi.org/10.1623/hysj.49.4.685.54425
  40. Sung, J. H., Baek, H. J., Kang, H. S., and Kim, Y. O. (2012). "The assessment of future flood vulnerability for Seoul region." Journal of The Korean Wetlands Society, Vol. 14, No. 3, pp. 341-352.
  41. Tadikamalla, P. (1980). "A look at the Burr and related distributions." International Statistical Review, Vol. 48, No. 3, pp. 337-344. https://doi.org/10.2307/1402945
  42. The Institution of Engineers (2001). Australian Rainfall and Runoff.
  43. The Ministry of Construction and Transportation. (2000). Creation of Korean probability rainfall map: Research report on development of water resource management techniques.
  44. Thompson, C. S. (1992). HIRDS (Manual and software). National Institute of Water and Atmospheric Research, Wellington, New Zealand.
  45. U. S. Water Resources Council (1976). Guidelines for determining flood flow frequency, Bulletin 17, Washington, D. C.
  46. United Nations Framework Convention on Climate Change (2006). Technologies for adaptation to climate change.
  47. Wang, F. K., Keats, J. B., and Zimmer, W. J. (1996). "Maximum likelihood estimation of the Burr XII distribution with censored and uncensored data." Microelectronics Reliability, Vol. 36, No. 3, pp. 359-362. https://doi.org/10.1016/0026-2714(95)00077-1
  48. Wilby, R. L., and Dessai, S. (2010). "Robust adaptation to climate change." Weather, Vol. 65, No. 7, pp. 180-185. https://doi.org/10.1002/wea.543
  49. Wingo, D. R. (1983). "Maximum likelihood methods for fitting the Burr Type XII distribution parameters to life test data." Biometrical Journal, Vol. 25, No. 1, pp. 203-210.
  50. Wingo, D. R. (1993). "Maximum likelihood estimation of Burr XII distribution parameters under type II censoring." Microelectronics Reliability, Vol. 33, No. 9, pp. 1251-1257. https://doi.org/10.1016/0026-2714(93)90126-J
  51. Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., Roo, A. de, Doll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffe, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P. (2011). "Hyperresolution global land surface modeling: Meeting a grand challeng for monitoring Earth's terrestrial water." Water Resources Research, Vol. 47, W05301, doi: 10.1029/2010WR010090.