DOI QR코드

DOI QR Code

확률론적 방법론을 이용한 레이더 강우 앙상블 생성

Generation of radar rainfall ensemble using probabilistic approach

  • 강나래 (한국건설기술연구원 수자원.하천연구소) ;
  • 주홍준 (인하대학교 대학원 토목공학과) ;
  • 이명진 (인하대학교 대학원 토목공학과) ;
  • 김형수 (인하대학교 대학원 토목공학과)
  • Kang, Narae (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Joo, Hongjun (Department of Civil Engineering, Inha University) ;
  • Lee, Myungjin (Department of Civil Engineering, Inha University) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha University)
  • 투고 : 2016.12.20
  • 심사 : 2017.02.14
  • 발행 : 2017.03.31

초록

수문분석에 있어 정확한 강우량 추정 및 강우 자료의 품질은 매우 중요한 요소로 특히, 홍수유출 결과에 큰 영향을 미친다. 따라서 보다 신뢰성 높은 홍수분석을 위해서는 강우자료에 내포된 오차 또는 불확실성을 확인하는 과정이 필요하다고 할 수 있다. 본 연구에서는 임의의 값을 추정하는데 있어 하나의 값이 아닌 가능한 값들의 범위를 정의하거나 확률분포를 표시할 수 있는 확률론적인 방법을 제시하고 이를 레이더 강우에 적용하여 그 활용성을 평가하고자 하였다. 2012년 태풍 '산바'로 인해 남강댐 유역에 발생한 호우 사상에, 확률론적 방법을 적용하여 레이더 강우의 앙상블을 생성하였다. 생성된 강우 앙상블은 레이더 강우의 전체적인 편의보정뿐만 아니라 지상강우의 패턴을 잘 모의하고 있는 것으로 나타났으며, 레이더에 의해 추정한 강우의 불확실성을 잘 표현하고 있는 것으로 확인되었다. 확률론적 기법에 의한 강우 앙상블 생성 방법은 발생 가능한 다양한 강우 시나리오를 제공할 수 있으며 홍수예경보와 같은 의사 결정에 유용한 정보를 제공할 수 있을 것으로 판단된다.

Accurate QPE (Quantitative Precipitation Estimation) and the quality of the rainfall data for hydrological analysis are very important factors. Especially, the quality has a great influence on flood runoff result. It needs to know characteristics of the uncertainties in radar QPE for the reliable flood analysis. The purpose of this study is to present a probabilistic approach which defines the range of possible values or probabilistic distributions rather than a single value to consider the uncertainties in radar QPE and evaluate its applicability by applying it to radar rainfall. This study generated radar rainfall ensemble for the storms by the typhoon 'Sanba' on Namgang dam basin, Korea. It was shown that the rainfall ensemble is able to simulate well the pattern of the rain-gauge rainfall as well as to correct well the overall bias of the radar rainfall. The suggested ensemble technique represented well the uncertainties of radar QPE. As a result, the rainfall ensemble model by a probabilistic approach can provide various rainfall scenarios which is a useful information for a decision making such as flood forecasting and warning.

키워드

참고문헌

  1. AghaKouchak, A., Habib, E., and Bardossy, A. (2009). "Modeling radar rainfall estimation uncertainties: a random error model." Journal of Hydrologic Engineering, Vol. 15, No. 4, pp. 265-274. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000185
  2. Brandes, E. A. (1975). "Optimizing rainfall estimates with the aid of radar." Journal of Applied Meteorology, Vol. 14, No. 7, pp. 1339-1345. https://doi.org/10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2
  3. Bae, Y. H., Kim, B. S., and Kim, H. S. (2010). "The study on flood runoff simulation using runoff model with gauge-adjusted radar data." Journal of Korean Wetlands Society, Vol. 12, No. 1, pp. 51-61.
  4. Ciach, G. J., Krajewski, W. F., and Villarini, G. (2007). "Producterror-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data." Journal of Hydrometeorology, Vol. 8, No. 9, pp. 1325-1347. https://doi.org/10.1175/2007JHM814.1
  5. Collier, C. G. (1986). Applications of Weather Radar Systems. Wiley.
  6. Dai, Q., Han, D., Zhuo, L., Zhang, J., Islam, T., and Srivastava, P. K. (2016). "Seasonal ensemble generator for radar rainfall using copula and autoregressive model." Stochastic Environmental Research and Risk Assessment, Vol. 30, No. 1, pp. 27-38. https://doi.org/10.1007/s00477-014-1017-x
  7. Deutsch, C. V., and Journel, A. G. (1998). GSLIB: Geostatistical Software Library and User's Guide (2nd ed), Oxford University Press, New York.
  8. Germann, U., Berenguer, M., Sempere-Torres, D., and Salvade G. (2006). "Ensemble radar precipitation - a new topic on the radar horizon." Proceeding of the 4th European Conference on Radar in Meteorology and Hydrology ERAD, Barcelona, Spain, 18-22 September 2006.
  9. Germann, U., Berenguer, M., Sempere-Torres, D., and Zappa, M. (2009). "REAL - Ensemble radar precipitation estimation for hydrology in a mountainous region." Quarterly Journal of the Royal Meteorological Society, Vol. 135, No. 639, pp. 445-456. https://doi.org/10.1002/qj.375
  10. He, X., Refsgaard, J. C., Sonnenborg, T. O., Vejen, F., and Jensen, K. H. (2011). "Statistical analysis of the impact of radar rainfall uncertainties on water resources modeling." Water Resources Research, Vol. 47, No. 9.
  11. Hitchfeld, W., and Bordan, J. (1954). "Erros inherent in the radar measurement of rainfall at attenuating wavelengths." Journal of meteorology, Vol. 11, No. 1, pp. 58-67. https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2
  12. Jang, H. S., Kang, N. R., Noh, H. S., Lee, D. R., Choi, C. H., and Kim, H. S. (2016). "Applicability of spatial interpolation methods for the estimation of rainfall field." Journal of Korean Wetlands Society, Vol. 16, No. 4, pp. 370-379.
  13. Kim, B. S., Kim, B. K., and Kim, H. S. (2008). "Flood simulation using the gauge-adjusted radar rainfall and physics-based distributed hydrologic model." Hydrological Processes, Vol. 22, No. 22, pp. 4400-4414. https://doi.org/10.1002/hyp.7043
  14. Kim, G. H., Lee, G. W., Kang, D. H., Kwon, B. H., and Han, G. Y. (2014). "The adjustment of radar precipitation estimation based on the local gauge correction method." Journal of the Korean Earth Science Society, Vol. 35 No. 2, pp. 115-130. https://doi.org/10.5467/JKESS.2014.35.2.115
  15. Kim, J. G. (2008). A study on application of GIS based distributed model and lumped model by run-off analysis, Master Thesis, Chungnam University.
  16. Kim, S., Kwon, Y. S., Lee, K. H., and Kim, H. S. (2010). "Radar rainfall adjustment by artificial neural network and runoff analysis." Journal of Korean Society of Civil Engineers, Vol. 30, No. 2B, pp. 159-167.
  17. Kim, S., and Lim, G. H. (2015). "Representation of model uncertainty in the short-range ensemble prediction for typhoon rusa (2002) atmosphere." Korean Meteorological Society, Vol. 25, No. 1, pp. 1-18.
  18. Kumar, S. V., Riechle, R. H., Peters-Lidard, C. D., Koster, R. D., Zhan, X., Crow, W. T., Eylander, J. B., and Houser, P. R. (2008). "A land surface data assimilation framework using the land information system: description and applications." Advances in Water Resources, Vol. 31, No. 11, pp. 1419-1432. https://doi.org/10.1016/j.advwatres.2008.01.013
  19. Lee, K. H., Kim, H. S., Kim. S. J., and Kim, B. S. (2010). "Estimation of flash flood guidance considering uncertainty of rainfallrunoff model." Journal of Korean Wetlands Society, Vol. 12, No. 3, pp. 155-163.
  20. Noh, H. S., Kang, N., Kim, B. S., and Kim, H. S. (2012). "Flood simulation using vflo and radar rainfall adjustment data by statistical objective analysis." Journal of Korean Wetlands Society, Vol. 14, No. 2, pp. 243-254.
  21. Oscar, A. K., and Thian, Y. G. (2006). "Semi-distributed modelling of basin hydrology with radar and gauged precipitation." Hydrological Processes, Vol. 20, No. 17, pp. 3725-3746. https://doi.org/10.1002/hyp.6385
  22. Priestley, M. (1981). Spectral analysis and time series. Academic Press, London
  23. Rubel, F., and Brugger, K. (2009). "3-hourly quantitative precipitation estimation over central and northern europe from rain gauge and radar data." Atmospheric Research, Vol. 94, No. 4, pp. 544-554. https://doi.org/10.1016/j.atmosres.2009.05.005
  24. Rutgersson, A., Smedman, A. S., and Omstedt, A. (2001). "Measured and simulated latent and sensible heat fluxes at two marine sites in the Baltic sea." Boundary-Layer Meteorology, Vol. 99, No. 1, pp. 53-84. https://doi.org/10.1023/A:1018799227854
  25. Seo, B. C. (2010). Towards a better representation of radar-rainfall: filling gaps in understanding uncertainties, Ph.D. dissertation, The University of Iowa.
  26. Seo, D. J. (1998). "Real-time estimation of rainfall fields using radar rainfall and rain gage data." Journal of Hydrology, Vol. 208, No. 1, pp. 37-52. https://doi.org/10.1016/S0022-1694(98)00141-3
  27. Seo, Y. M., and Park, K. B. (2011). "Uncertainty analysis for parameter estimation of probability distribution in rainfall frequency analysis using bootstrap." Journal of the Environmental Sciences, Vol.20, No.3, pp.321 https://doi.org/10.5322/JES.2011.20.3.321
  28. Wilson, J. W., and Brandes, E. A. (1979). "Radar measurement of rainfall - A summary." Bulletin of the American Meteorological Society, Vol. 60, No. 9, pp. 1048-1058. https://doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
  29. Woodley, W., Olsen, A., Herndon, A., and Wiggert, V. (1975). "Comparison of gage and radar methods of convective rain measurement." Journal of Applied Meteorology, Vol. 14, No. 5, pp. 909-928. https://doi.org/10.1175/1520-0450(1975)014<0909:COGARM>2.0.CO;2
  30. Yin, J., Zhan, X., Zheng, Y., Hain, C. R., Liu, J., and Fang, L. (2015). "Optimal ensemble size of ensemble Kalman filter in sequential soil moisture data assimilation." Geophysical Research Letters, Vol. 42, No. 16, pp. 6710-6715. https://doi.org/10.1002/2015GL063366
  31. Yoo, C., Ha, E., and Kim, K. (2006). "Effect of zero measurements on the spatial correlation structure of rainfall." Journal of Korea Water Resources Association, Vol. 39, No. 2, pp. 127-138. https://doi.org/10.3741/JKWRA.2006.39.2.127
  32. Yoon, S., Lee, B., and Choi, Y. (2015). "Quantitative precipitation estimation using high density rain gauge network in Seoul area, atmosphere." Korean Meteorological Society, Vol. 25, No. 2, pp. 283-294.

피인용 문헌

  1. Evaluation of the Structure of Urban Stormwater Pipe Network Using Drainage Density vol.10, pp.10, 2018, https://doi.org/10.3390/w10101444