DOI QR코드

DOI QR Code

Arabidopsis MAP3K16 and Other Salt-Inducible MAP3Ks Regulate ABA Response Redundantly

  • Choi, Seo-wha (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Seul-bee (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Na, Yeon-ju (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Jeung, Sun-geum (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Soo Young (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2016.12.31
  • 심사 : 2017.03.14
  • 발행 : 2017.03.31

초록

In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared MAP3K16 overexpression (OX) lines and analyzed their phenotypes. The result showed that the transgenic plants were ABA-insensitive during seed germination and cotyledon greening stage but their root growth was ABA-hypersensitive. The OX lines were more susceptible to water-deficit condition at later growth stage in soil. A MAP3K16 knockout (KO) line, on the other hand, exhibited opposite phenotypes. In similar transgenic analyses, we found that MAP3K14/15/17/18 OX and KO lines displayed similar phenotypes to those of MA3K16, suggesting the functional redundancy among them. MAP3K16 possesses in vitro kinase activity, and we carried out two-hybrid analyses to identify MAP3K16 substrates. Our results indicate that MAP3K16 interacts with MKK3 and the negative regulator of ABA response, ABR1, in yeast. Furthermore, MAP3K16 recombinant protein could phosphorylate MKK3 and ABR1, suggesting that they might be MAP3K16 substrates. Collectively, our results demonstrate that MAP3K16 and MAP3K14/15/17/18 are involved in ABA response, playing negative or positive roles depending on developmental stage and that MAP3K16 may function via MKK3 and ABR1.

키워드

참고문헌

  1. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez- Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. https://doi.org/10.1038/415977a
  2. Bechtold, N., and Pelletier, G. (1998). In planta Agrobacteriummediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods in Mol. Biol. 82, 259-266.
  3. Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723-1730. https://doi.org/10.1074/jbc.275.3.1723
  4. Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Hwang, I., and Kim, S.Y. (2005). Arabidopsis calciumdependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol. 139, 1750-1761. https://doi.org/10.1104/pp.105.069757
  5. Colcombet, J., and Hirt, H. (2008). Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413, 217-226. https://doi.org/10.1042/BJ20080625
  6. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122
  7. Czechowski, T., Stitt, M., Altmann, T., Udvardi. M.K., and Scheible, W.R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5-17. https://doi.org/10.1104/pp.105.063743
  8. Danquah, A., de Zelicourt, A., Colcombet, J., and Hirt, H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32, 40-52. https://doi.org/10.1016/j.biotechadv.2013.09.006
  9. Danquah, A., de Zelicourt, A., Boudsocq, M., Neubauer, J., Frei Dit Frey, N., Leonhardt, N., Pateyron, S., Gwinner, F., Tamby, J.P., Ortiz- Masia, D., et al. (2015). Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J. 82, 232-244. https://doi.org/10.1111/tpj.12808
  10. Duttweiler, H.M. (1996). A highly sensitive and non-lethal betagalactosidase plate assay for yeast. Trends Genet. 12, 340-341. https://doi.org/10.1016/S0168-9525(96)80008-4
  11. Finkelstein, R. (2013). Abscisic Acid synthesis and response. The Arabidopsis book / American Society of Plant Biologists 11, e0166. https://doi.org/10.1199/tab.0166
  12. Fujii, H., and Zhu, J.K. (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. USA 106, 8380-8385. https://doi.org/10.1073/pnas.0903144106
  13. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664. https://doi.org/10.1038/nature08599
  14. Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., et al. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123-2132. https://doi.org/10.1093/pcp/pcp147
  15. Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509-525. https://doi.org/10.1007/s10265-011-0412-3
  16. Holdsworth, M.J., Bentsink, L., and Soppe, W.J. (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179, 33-54. https://doi.org/10.1111/j.1469-8137.2008.02437.x
  17. Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S., Hirt, H., Wilson, C., et al. (2002). Mitogenactivated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301-308. https://doi.org/10.1016/S1360-1385(02)02302-6
  18. Jammes, F., Song, C., Shin, D., Munemasa, S., Takeda, K., Gu, D., Cho, D., Lee, S., Giordo, R., Sritubtim, S., et al. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc. Natl. Acad. Sci. USA 106, 20520-20525. https://doi.org/10.1073/pnas.0907205106
  19. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987) GUS fusions: ${\beta}$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 20, 3901-3907.
  20. Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., et al. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. USA 109, 19486-19491. https://doi.org/10.1073/pnas.1214848109
  21. Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357. https://doi.org/10.1105/tpc.010362
  22. Khokon, M.A., Salam, M.A., Jammes, F., Ye, W., Hossain, M.A., Uraji, M., Nakamura, Y., Mori, I.C., Kwak, J.M., and Murata, Y. (2015). Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana. Plant Biol. 17, 946-952. https://doi.org/10.1111/plb.12321
  23. Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., and Schroeder, J.I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and $Ca^{2+}$ signaling. Annu. Rev. Plant Biol. 61, 561-591. https://doi.org/10.1146/annurev-arplant-042809-112226
  24. Lampard, G.R., Lukowitz, W., Ellis, B.E., and Bergmann, D.C. (2009). Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations. Plant Cell 21, 3506-3517. https://doi.org/10.1105/tpc.109.070110
  25. Lee, S.J., Cho, D.I., Kang, J.Y., and Kim, S.Y. (2009). An ARIAinteracting AP2 domain protein is a novel component of ABA signaling. Mol. Cells 27, 409-416. https://doi.org/10.1007/s10059-009-0058-3
  26. Lee, S.J., Lee, M.H., Kim, J.I., and Kim, S.Y. (2015). Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response. Plant Cell Physiol. 56, 84-97. https://doi.org/10.1093/pcp/pcu148
  27. Liu, Y. (2012). Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 31, 1-12. https://doi.org/10.1007/s00299-011-1130-y
  28. Lopez-Molina, L., Mongrand, S., and Chua, N.H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. USA 98, 4782-4787. https://doi.org/10.1073/pnas.081594298
  29. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
  30. Matsuoka, D., Yasufuku, T., Furuya, T., and Nanmori, T. (2015). An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Mol. Biol. 87, 565-575. https://doi.org/10.1007/s11103-015-0295-0
  31. Mitula, F., Tajdel, M., Ciesla, A., Kasprowicz-Maluski, A., Kulik, A., Babula-Skowronska, D., Michalak, M., Dobrowolska, G., Sadowski, J., and Ludwikow, A. (2015). Arabidopsis ABA-activated kinase MAPKKK18 is regulated by Protein phosphatase 2C ABI1 and the ubiquitin-proteasome pathway. Plant Cell Physiol. 56, 2351-2367. https://doi.org/10.1093/pcp/pcv146
  32. Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165-185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
  33. Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li, L. and Luan, S. (2005). ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 139, 1185-1193. https://doi.org/10.1104/pp.105.066324
  34. Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
  35. Qiao, H., Shen, Z., Huang, S.S., Schmitz, R.J., Urich, M.A., Briggs, S.P., and Ecker, J.R. (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338, 390-393. https://doi.org/10.1126/science.1225974
  36. Rodriguez, M.C., Petersen, M., and Mundy, J. (2010). Mitogenactivated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621-649. https://doi.org/10.1146/annurev-arplant-042809-112252
  37. Takahashi, Y., Soyano, T., Kosetsu, K., Sasabe, M., and Machida, Y. (2010). HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol. 51, 1766-1776. https://doi.org/10.1093/pcp/pcq135
  38. Teige, M., Scheikl, E., Eulgem, T., Doczi, F., Ichimura, K., Shinozaki, K., Dangl, J.L., and Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15, 141-152. https://doi.org/10.1016/j.molcel.2004.06.023
  39. Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann. K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428-438. https://doi.org/10.1111/j.1365-313X.2004.02219.x
  40. Xing, Y., Jia, W.S., and Zhangl, J.H. (2008). AtMKK1 mediates ABAinduced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 54, 440-451. https://doi.org/10.1111/j.1365-313X.2008.03433.x
  41. Xing, Y., Jia, W.S., and Zhang, J.H. (2009). AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Mol. Biol. 70, 725-736. https://doi.org/10.1007/s11103-009-9503-0
  42. Xiong, L.M., Schumaker, K.S., and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-S183. https://doi.org/10.1105/tpc.000596
  43. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. https://doi.org/10.1038/nprot.2007.199
  44. Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789-795. https://doi.org/10.1038/nature06543
  45. Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2015). Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant Cell Physiol. 56, 1043-1052. https://doi.org/10.1093/pcp/pcv060

피인용 문헌

  1. Nuclear Signaling of Plant MAPKs vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00469
  2. MAP3Kθ1 is Involved in Abscisic Acid Signaling in Drought Tolerance and Seed Germination in Arabidopsis vol.63, pp.1, 2017, https://doi.org/10.1007/s12374-020-09226-w
  3. Transcriptome profiling of mild-salt responses in Lycium ruthenicum early seedlings to reveal salinity-adaptive strategies vol.42, pp.4, 2020, https://doi.org/10.1007/s11738-020-03048-6
  4. Advances in the elucidation of nuclear proteins in the model plant Arabidopsis thaliana: based on protein interactions and bioinformatics analysis vol.16, pp.1, 2021, https://doi.org/10.1080/17429145.2021.1998681
  5. Mitogen-Activated Protein Kinase CaDIMK1 Functions as a Positive Regulator of Drought Stress Response and Abscisic Acid Signaling in Capsicum annuum vol.12, pp.None, 2017, https://doi.org/10.3389/fpls.2021.646707
  6. Transcriptomic profiling of wheat near-isogenic lines reveals candidate genes on chromosome 3A for pre-harvest sprouting resistance vol.21, pp.1, 2017, https://doi.org/10.1186/s12870-021-02824-x