DOI QR코드

DOI QR Code

Nonlinear Composite Filter for Gaussian and Impulse Noise Removal

가우시안 및 임펄스 잡음 제거를 위한 비선형 합성 필터

  • Kwon, Se-Ik (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2016.10.27
  • Accepted : 2016.12.08
  • Published : 2017.03.31

Abstract

In this paper, we proposed a nonlinear synthesis filter for noise reduction to reduce the effects of Gaussian noise and impulse noise. When the centralization of the local mask is judged to be Gaussian noise by the noise judgment, the weight value of the weight filter are applied differently according to the spatial weight filter and the pixel change by using the sample variance in the local mask. And if it is determined as the impulse noise, we proposed an algorithm that applies different weights of local histogram weight filter and standard median filter according to noise density of mask. In order to evaluate the performance of the proposed filter algorithm, we used PSNR(peak signal to noise ratio) and compared existing methods and proposed filter algorithm in the mixed noise environment with Gaussian noise, impulsive noise, and two noises mixed.

본 논문에서는 영상에 첨가된 가우시안 잡음과 임펄스 잡음의 영향을 완화하기 위하여 잡음의 종류에 따라 처리하는 비선형 합성 필터를 제안하였다. 잡음 판단을 통해 국부 마스크의 중심화가 가우시안 잡음으로 판단된 경우, 국부 마스크 내의 표본분산을 이용하여 공간 가중치 필터와 화소 변화에 따른 가중치 필터의 가중치를 다르게 적용하여 처리하고, 임펄스 잡음으로 판단된 경우, 국부 마스크의 잡음 밀도에 따라 국부 히스토그램 가중치 필터와 표준 메디안 필터의 가중치를 다르게 적용하여 처리하는 알고리즘을 제안하였다. 그리고 제안한 필터 알고리즘의 성능을 평가하기 위해 PSNR(peak signal to noise ratio)을 사용하여 기존의 방법들과 제안한 필터 알고리즘을 가우시안 잡음, 임펄스 잡음 및 두 잡음이 혼합된 복합잡음 환경에서 각각 비교하였다.

Keywords

References

  1. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications, 1st ed. Berlin, Germany: Springer, 2000.
  2. R. C. Gonzalez and R. E. woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2008.
  3. X. Long and N. H. Kim, "Image Restoration for Edge Preserving in Mixed Noise Environment," Journal of Information and Communication Convergence Engineering, vol. 18, no. 3, pp. 727-734, Mar. 2014.
  4. S. I. Kwon and N. H. Kim, "A Study on Modified Spatial Weighted Filter in Mixed Noise Environments," Journal of Information and Communication Convergence Engineering, vol. 19, no. 1, pp. 237-243, Jan. 2015.
  5. R. Oten and R. J. P. de Figueiredo, "Adaptive Alpha-Trimmed Mean Filters Under Deviations From Assumed Noise Model," IEEE Trans, Image Processing, vol. 13, no. 5, pp. 627-639, May 2004. https://doi.org/10.1109/TIP.2003.821115
  6. J. Wang and J. Hong, "A New Selt-Adaptive Weighted Filter for Removing Noise in Infrared Images," in Proceedings of IEEE Information Engineering and Computer Science, Wuhan, China, pp.1-4, Dec. 2009.
  7. T. Azetsu, N. Suetake and E. Uchino, "Trilateral Filter Using Rank Order Information of Pixel Value for Mixed Gaussian and Impulsive Noise Removal," in Proceedings of IEEE Intelligent Signal Processing and Communications Systems, Okinawa, Japan, pp. 303- 306, Nov. 2013.
  8. T. Bai and J. Tan, "Automatic detection and removal of high-density impulse noises," IET Image Processing, vol. 9, no.2, pp.162-172, Feb. 2015. https://doi.org/10.1049/iet-ipr.2014.0286

Cited by

  1. 무인항공기 보안 취약점 개선을 위한 연구 vol.7, pp.3, 2017, https://doi.org/10.30693/smj.2018.7.3.64
  2. 고밀도 잡음 환경에서 엔트로피를 이용한 잡음 제거 방법 vol.24, pp.10, 2017, https://doi.org/10.6109/jkiice.2020.24.10.1255