DOI QR코드

DOI QR Code

Impact of Rising Global Temperatures on Growth, Mineral Composition, and Photosynthesis in Radish in a Winter Cropping System

월동무의 생장, 무기성분 조성과 광합성에 미치는 온도 상승의 영향

  • Oh, Soonja (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Song, Eun Young (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Son, In-Chang (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Wi, Seung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 송은영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 손인창 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 위승환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2016.06.04
  • Accepted : 2016.09.13
  • Published : 2017.02.28

Abstract

We investigated the effects of rising temperatures on the photosynthesis, mineral composition, and growth of radish (Raphanus sativus var. hortensis) in a winter cropping system using a temperature gradient tunnel to predict the impact of rising global temperatures. Vegetative growth, including shoot and root fresh and dry weights, shoot length, and root length and diameter, was high under elevated temperatures (ambient $+4^{\circ}C$ and $+7^{\circ}C$) compared with ambient temperature. At elevated temperatures, the N, P, Ca, Mg, and Fe contents were high in shoots, whereas in roots, the K, Ca, Mg, and Fe contents were high and the Cu content was low. The maximum photosynthetic rates ($22.1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at ambient temperature $+4^{\circ}C$ and $22.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at ambient temperature $+7^{\circ}C$) at elevated temperatures were more than twice that ($9.7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at ambient temperature, whereas the water use efficiency was lower at elevated temperatures. These results suggest that rising global temperatures will lead to increased mineral absorption and photosynthesis in radish in winter cropping systems, subsequently favoring plant growth, although the water requirements will be high.

본 연구에서는 온도구배터널을 이용하여 기온상승이 우리나라 주요 노지 채소인 월동무의 광합성, 무기성분 조성, 생장에 미치는 영향을 조사하여 겨울철 기온상승이 월동무의 생육에 미치는 영향을 예측하였다. 월동무의 생육(지상부와 뿌리의 생체중과 건물중, 초장, 뿌리의 길이와 직경)은 겨울철 대기온도에서 보다 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서 재배하였을 때 증가하였다. 그리고, 겨울철 온도가 높아졌을 때 월동무 뿌리에서는 Cu 함량이 감소하지만 K, Ca, Mg, Fe 함량은 증가하였으며, 지상부에서는 N, P, Ca, Mg, Fe의 함량이 증가하였다. 최대광합성률은 겨울철 대기온도에서 $9.7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 낮은데 반하여 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서는 각각 $22.1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$$22.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 대기온도에서보다 2배 이상 높았다. 반면에 수분이용효율은 대기온도 $+4^{\circ}C$와 대기온도 $+7^{\circ}C$ 조건에서 재배하였을 때 대기온도에서보다 감소하였다. 이러한 결과는 미래의 겨울철 온도 상승이 무기염류의 흡수와 광합성의 증가를 유도하여 월동무의 생육에 우호적으로 작용하여 생산성을 높이지만 수분 요구도가 높아질 수 있음을 나타내 주고 있다.

Keywords

References

  1. Ahad B, Reshi ZA (2015) Climate Change and Plants. In KR Hakeem, ed, Crop Production and Global Environmental Issues, Springer International Publishing pp553-574. doi:10.1007/978-3-319-23162-4_20
  2. Boatwright GO, Ferguson H, Sims JR (1976) Soil temperature around the crown node influences early growth, nutrient uptake, and nutrient translocation of spring wheat. Agron J 68:227-231. doi:10.2134/agronj1976.00021962006800020004x
  3. Eguchi H, Koutaki M (1986) Analysis of soil temperature effect on transpiration by leaf heat balance in cucumber, cucurbit and their grafted plants. Biotronics 15:45-54
  4. Engelen-Eigles G, Erwin JE (1997) A model plant for vernalization studies. Sci Hortic 70:197-202. doi:10.1016/S0304-4238(97)00037-X
  5. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: Mitigation of climate change, contribution of working group III contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, USA.
  6. Jarvan M, Po-ldma P (2004) Contents of plant nutrients in vegetables depending on various lime materials used for neutralizing bog peat. Agron Res 2:39-48
  7. Jeju Regional Meteorological Administration (JRMA) (2011) Report on Climate Change in the Jeju Region, JRMA, Jeju, Korea.
  8. Kim IG, Park KJ, Kim BJ (2013) Analysis of meterological factors on yield of chinese cabbage and radish in winter cropping system. Kor J Agric For Meteorol 15:59-66. doi:10.5532/KJAFM.2013.15.2.059
  9. Ko BH, Kim BS (2013) A Study on Supply and Demand and Price Stabilization of the Winter Vegetables in Jeju. Research Report (2013-13), Jeju Developement Institute.
  10. Korea Meteorological Administration (KMA) (2011) Automatic weather system (AWS). http://www.kma.go.kr
  11. Lee DS, Lee YR, Yae BW (2011) Effect of root zone temperature on the induction of inflorescence of phalaenopsis in summer. Korean J Hortic Sci Technol 29:10-15
  12. Marshall B, Biscoe PV (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance. J Exp Bot 31:29-39. doi:10.1093/jxb/31.1.41
  13. Nakano U (2007) Response of tomato root systems to environmental stress under soilless culture. Jpn Agri Res Quart 41:7-15. doi:10.6090/jarq.41.7
  14. National Institute of Agricultural Science and Technology (NIAST) (2000) Analytical methods of soil and plant. NIAST. Rural Development Administration (RDA). Suwon. Korea.
  15. Oh S, Moon KH, Son IC, Song EY, Moon YE, Koh SC (2014) Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Korean J Hort Sci Technol 32:318-329. doi:10.7235/hort.2014.13174
  16. Oh S, Moon KH, Song EY, Son IC, Koh SC (2015) Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Hort Environ Biotechnol 56:159-166. doi:10.1007/s13580-015-0122-1
  17. Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Op Bot 55:1-57
  18. Rural Development Administration (RDA) (2005) Protected horticulture. Sammi Publishing Co., Suwon. Korea.
  19. Tindall JA, Mills HA, Radcliffe DE (1990) The effect of root zone temperature on nutrient uptake of tomato. J Plant Nutr 13:939-956. doi:10.1080/01904169009364127
  20. Yildirim E, Dursun A, Turan M (2001) Determination of nutrition contents of the wild plants used as vegetables in upper Coruh vally. Turk J Bot 25:367-371
  21. Yoshida S, Eguchi H (1989) Effect of root temperature on gas exchange and water uptake in intact roots of cucumber plants (Cucumis sativus L.) in hydroponics. Biotronics 18:15-21