DOI QR코드

DOI QR Code

Characteristic Analysis of Particulate Composites According to a Random Microstructure

랜덤 미세구조에 따른 입자 복합재료의 특성분석

  • Park, Cheon (School of Mechanical Engineering, Pusan National Univ.) ;
  • Kang, Young-Jin (School of Mechanical Engineering, Pusan National Univ.) ;
  • Noh, Yoojeong (School of Mechanical Engineering, Pusan National Univ.) ;
  • Lim, O-Kaung (School of Mechanical Engineering, Pusan National Univ.)
  • 박천 (부산대학교 기계공학부) ;
  • 강영진 (부산대학교 기계공학부) ;
  • 노유정 (부산대학교 기계공학부) ;
  • 임오강 (부산대학교 기계공학부)
  • Received : 2016.10.20
  • Accepted : 2016.12.19
  • Published : 2017.02.28

Abstract

Since shape, size and distribution of particles in particulate composites have spreaded characteristics, properties of particulate composites have variation and also system behavior using particulate composites have variation. However, it is difficult to consider spreaded characteristic of particles so that a system behavior is analysed using homogeneous techniques or using microstructure in local areas. In this study, for considering random variation of particles, RMDFs(random morphology description functions) are used to generate random microstructure and relationship between the number of gaussian functions and spreaded characteristic of particles was analysed using the geometrical moment of area. Also, multi-scale analysis was carried out for cantilever beam with full-random microstructure to study behavior of particulate composites structure. As a result, it is defined that spreaded characteristic of particles and the variation of deflections of cantilever beam are decreased as the number of Gaussian functions(N) is increased and converges at N=200.

입자 복합재료는 입자의 형상, 크기 그리고 분포의 산포특성으로 인해 물성치의 편차가 존재하고, 입자 복합재료를 사용한 시스템의 거동 또한 산포가 존재한다. 하지만 입자의 산포특성을 고려하기 어려우므로 균질화법을 사용하여 시스템의 거동을 해석하거나 국부영역에서 미세구조를 적용하여 해석한다. 본 연구에서는 입자의 랜덤적 산포특성을 고려하기 위해 RMDFs(random morphology description functions)를 사용하여 랜덤 미세구조를 생성하였고, 단면 1차 모멘트를 사용하여 가우시안 함수의 수(N)와 입자의 산포특성의 관계를 분석하였다. 그리고 랜덤 미세구조 구조물의 거동을 분석하기 위하여 랜덤 미세구조를 전체에 반영한 외팔보에 multi-scale 해석을 수행하였다. 그 결과 입자의 산포특성과 외팔보의 처짐의 편차는 N의 증가에 따라 감소하고 N=200에서 수렴하는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. Cho, J.R., Choi, J.H., Shin, D.S. (2008) Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material, J. Comput. Struct. Eng. Inst. Korea, 21(1), pp.13-20.
  2. Cho, J.R., Kang, Y.J., Jeong, K.Y., Noh, Y.J., Lim, O.K. (2012) Homogenization and Thermoelastic Analysis of Heterogenous Material with Regular and Random Microstructures, Compos.: Part B, 43(5), pp.2313-2323. https://doi.org/10.1016/j.compositesb.2011.11.074
  3. Goupee, A.J., Vel, S.S. (2010) Multiscale Thermoelastic Analysis of Random Heterogeneous Materials Part II: Direct Micromechanical Failure Analysis and Multiscale Simulation, Comput. Mater. Sci., 48(1), pp.39-53. https://doi.org/10.1016/j.commatsci.2009.10.004
  4. Grujicic, M., Zhang, Y. (1998) Determination of Effective Elastic Properties of Functionally Graded Materials using Voronoi Cell Finite Element Method, Mater. Sci. & Eng.: A, 251(1), pp.64-76. https://doi.org/10.1016/S0921-5093(98)00647-9
  5. Niino, M., Kisara, K. (2004) The Present Status of the Functionally Graded Materials and Future Prediction, J. Japan Soc. Powder & Powder Metall., 51(4), pp.242-249. https://doi.org/10.2497/jjspm.51.242
  6. Reiter, T., Dvorak, G.J., Tvergaard, V. (1997) Micromechanical Models for Graded Composite Materials, J. Mech. & Phys. Solids, 45(8), pp.1281-1302. https://doi.org/10.1016/S0022-5096(97)00007-0
  7. Roberts, A.P., Teubner, M. (1995) Transport Properties of Heterogeneous Materials Derived from Gaussian Random Fields: Bounds and Simulation, Phys. Rev. E, 51(5) pp.4141-4154. https://doi.org/10.1103/PhysRevE.51.4141
  8. Vel, S.S., Goupee, A.J. (2010) Multiscale Thermoelastic Analysis of Random Heterogeneous Materials Part I: Microstructure Characterization and Heterogeneous Materials Properties, Comput. Mater. Sci., 48(1), pp.22-38. https://doi.org/10.1016/j.commatsci.2009.11.015
  9. Wakashima, K., Tsukamoto, H. (1991) Mean-field Micromechanics Model and Its Application to the Analysis of Thermomechanical behaviour of Comp Osite Materials, Mater. Sci. & Eng.: A, 146(1), pp.291-316. https://doi.org/10.1016/0921-5093(91)90284-T

Cited by

  1. Microstructure Generation and Linearly Elastic Characteristic Analysis of Hierarchical Models for Dual-Phase Composite Materials vol.31, pp.3, 2018, https://doi.org/10.7734/COSEIK.2018.31.3.133