DOI QR코드

DOI QR Code

탈수소화효소 반응 및 촉매적 흡착 반응에 의한 액상 포름알데하이드의 제거 효율 연구

Investigation of Liquid Phase Formaldehyde Removal Efficiency by Enzymatic Formaldehyde Dehydrogenase and Catalytic Chemisorption Reactions

  • 함규진 (아주대학교 환경안전공학과) ;
  • 박민섭 (아주대학교 환경안전공학과) ;
  • 최권영 (아주대학교 환경안전공학과)
  • Ham, Kyu Jin (Department of Environmental Engineering, Ajou University) ;
  • Park, Min Seob (Department of Environmental Engineering, Ajou University) ;
  • Choi, Kwon-Young (Department of Environmental Engineering, Ajou University)
  • 투고 : 2016.11.03
  • 심사 : 2016.11.24
  • 발행 : 2017.02.10

초록

포름알데하이드는 무색, 무취의 유독성 물질로 다양한 방법을 통하여 포름알데하이드를 제거할 수 있는 방법들이 많이 보고되었다. 본 논문에서는 생물학적 효소 반응 및 화학적 흡착 촉매 반응에 의한 포름알데하이드의 제거 효율을 비활성을 통해 비교하였다. 첫째, Escherichia coli K12포름알데하이드 탈수소화 효소(Formaldehyde dehydrogenase, FDH)를 Escherichia coli BL21(DE3)에 클로닝하여 발현 및 분리하였다. FDH 효소 활성($k_{cat}/K_m$)은 $2.49{\times}10^3sec^{-1}mM^{-1}$로 측정되었으며, 비활성은 8.69 U/mg으로 측정되었다. 둘째, 화학적 흡착 및 화학 촉매를 이용한 포름알데하이드의 제거 효율도 동시에 진행하였다. 본 논문에서는 활성탄과 제올라이트, KI 및 KOH로 처리한 활성탄과 제올라이트를 화학적 포름알데하이드 흡착제로 사용하였으며 $Pd/TiO_2$ 산화 촉매를 이용하여 포름알데하이드의 산화 반응 효율을 결정하였다. 결론적으로 본 논문에서 수행한 화학적 흡착 및 산화 촉매 반응의 경우 대략 50%의 비슷한 수준의 포름알데하이드 제거 효율을 보였으며, 특히 비활성의 경우 탈수소화효소의 비활성이 0.01-0.26 U/g 수준의 화학적 흡착 및 산화 촉매보다 월등히 높게 측정되었다.

Formaldehyde is one of the toxic substances without any color and smell. Several methods to remove formaldehyde has been investigated up to now. Here, both the enzymatic and chemisorptive/catalytic liquid phase formaldehyde removal were investigated, and their catalytic activities in terms of specific activities were compared. Firstly, formaldehyde dehydrogenase (FDH) enzyme from Escherichia coli K12 was cloned, and expressed in Escherichia coli BL21(DE3). And the catalytic activity was characterized as $2.49{\times}10^3sec^{-1}mM^{-1}$ of $k_{cat}/K_m$ with 8.69 U/mg of the specific activity. Secondly, the chemisorptive and oxidative catalytic removals were investigated simultaneously. Activated carbons and zeolites treated with heat, KI, and KOH were used as chemisorption medium. And $Pd/TiO_2$ was used as an oxidative catalyst for the formaldehyde removal. All of the tested chemicals showed similar formaldehyde removal efficiencies of around 50%. However, the specific activity of FDH dependent formaldehyde removal was absolutely higher than that of using chemisorptive and catalytic removal processes with the ranges of 0.01 to 0.26 U/g.

키워드

참고문헌

  1. T. H. Ma and M. M. Harris, Review of the genotoxicity of formaldehyde, Mutat. Res., 196, 37-59 (1988). https://doi.org/10.1016/0165-1110(88)90027-9
  2. C. L. Wiedemann, Formaldehyde toxicity, Oral Surg. Oral Med. Oral Pathol., 78, 554-555 (1994).
  3. A. Talaiekhozani, M. Salari, M. R. Talaei, M. Bagheri, and Z. Eskandari, Formaldehyde removal from wastewater and air by using UV, ferrate(VI) and UV/ferrate(VI), J. Environ. Manag., 184, 204-209 (2016). https://doi.org/10.1016/j.jenvman.2016.09.084
  4. Z. Xu and H. Hou, Formaldehyde removal from air by a biodegradation system, Bull. Environ. Contam. Toxicol., 85, 28-31 (2010). https://doi.org/10.1007/s00128-010-9975-2
  5. K. Ito, M. Takahashi, T. Yoshimoto, and D. Tsuru, Cloning and high-level expression of the glutathione-independent formaldehyde dehydrogenase gene from Pseudomonas putida, J. Bacteriol., 176, 2483-2491 (1994). https://doi.org/10.1128/jb.176.9.2483-2491.1994
  6. R. D. Barber, M. A. Rott, and T. J. Donohue, Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides, J. Bacteriol., 178, 1386-1393 (1996). https://doi.org/10.1128/jb.178.5.1386-1393.1996
  7. W. Zhang, S. Chen, Y. Liao, D. Wang, J. Ding, Y. Wang, X. Ran, D. Lu, and H. Zhu, Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa., Protein Expr. Purif., 92, 208-213 (2013). https://doi.org/10.1016/j.pep.2013.09.017
  8. M. Koivusalo and L. Uotila, Glutathione-dependent formaldehyde dehydrogenase/class III alcohol dehydrogenase: further characterization of the rat liver enzyme, Adv. Exp. Med. Biol., 328, 465-474 (1993).
  9. R. N. Patel, H. R. Bose, W. J. Mandy, and D. S. Hoare, Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus (Texas strain) and Pseudomonas species M27, J. Bacteriol., 110, 570-577 (1972).
  10. W. G. Gutheil, E. Kasimoglu, and P. C. Nicholson, Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza, Biochem. Biophys. Res. Commun., 238, 693-696 (1997). https://doi.org/10.1016/S0006-291X(00)90000-7
  11. L. Lessmeier, M. Hoefener, and V. F. Wendisch, Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase, Microbiology, 159, 2651-2662 (2013). https://doi.org/10.1099/mic.0.072413-0
  12. S. Ogushi, M. Ando, and D. Tsuru, Formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme, J. Biochem., 96, 1587-1591 (1984). https://doi.org/10.1093/oxfordjournals.jbchem.a134988
  13. N. Tanaka, Y. Kusakabe, K. Ito, T. Yoshimoto, and K. T. Nakamura, Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases, J. Mol. Biol., 324, 519-533 (2002). https://doi.org/10.1016/S0022-2836(02)01066-5
  14. N. Wen, W. Liu, Y. Hou, and Z. Zhao, The kinetics behavior of the reduction of formaldehyde catalyzed by alcohol dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH, Appl. Biochem. Biotechnol., 170, 370-380 (2013). https://doi.org/10.1007/s12010-013-0199-x
  15. K. Y. Choi et al., Development of colorimetric HTS assay of cytochrome p450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity, Chembiochem, 14, 1231-1238 (2013). https://doi.org/10.1002/cbic.201300212
  16. H. Huang and D. Y. C. Leung, Complete oxidation of formaldehyde at room temperature using $TiO_2$ supported metallic Pd nanoparticles, ACS Catal., 1, 348-354 (2011). https://doi.org/10.1021/cs200023p
  17. T. Kawai et al., Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film, Environ. Sci. Technol., 40, 4281-4285 (2006). https://doi.org/10.1021/es050098n
  18. S. Tanada, N. Kawasaki, T. Nakamura, M. Araki, and M. Isomura, Removal of formaldehyde by activated carbons containing amino groups, J. Colloid Interface Sci., 214, 106-108 (1999). https://doi.org/10.1006/jcis.1999.6176
  19. A. M. Ewlad-Ahmed, M. A. Morris, S. V. Patwardhan, and L. T. Gibson, Removal of formaldehyde from air using functionalized silica supports, Environ. Sci. Technol., 46, 13354-13360 (2012). https://doi.org/10.1021/es303886q
  20. S. Shin and J. Song, Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon, J. Hazard. Mater., 194, 385-392 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.001
  21. H. Dong, Y. H. Ding, and C. C. Sun, $C_2H+H_2CO$: a new route for formaldehyde removal, J. Chem. Phys., 122, 204321 (2005). https://doi.org/10.1063/1.1903945
  22. M. S. Quesenberry and Y. C. Lee, A rapid formaldehyde assay using purpald reagent: application under periodation conditions, Anal. Biochem., 234, 50-55 (1996). https://doi.org/10.1006/abio.1996.0048
  23. J. Pei and J. S. Zhang, Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal, HVAC&R Res., 17, 476-503 (2011).
  24. C. B. Zhang, H. He, and K. Tanaka, perfect catalytic oxidation of formaldehyde over a Pt/$TiO_2$ catalyst at room temperature, Catal. Commun., 6, 211 (2005). https://doi.org/10.1016/j.catcom.2004.12.012
  25. C. B. Zhang, H. He, and K. Tanaka, Catalytic performance and mechanisms of a Pt/$TiO_2$ catalyst for the oxdation of formaldehyde at room temperature, Appl. Catal. B, 65, 37-43 (2006). https://doi.org/10.1016/j.apcatb.2005.12.010
  26. X. Tang, J. Chen, X. Huang, Y. Xu and W. Shen, $Pt/MnO_{x}-CeO_{2}$ catalysts for the complete oxidaiton of formaldehyde at ambient temperature., Appl. Catal. B, 81, 115-121 (2006).
  27. T. Li et al., Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization, J. Am. Chem. Soc., 134, 6467-6472 (2012). https://doi.org/10.1021/ja3010495
  28. M. Oslaj, J. Cluzeau, D. Orkic G. Kopitar, P. Mrak, and Z. Casar, A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis, PLoS One, 8, e62250 (2013). https://doi.org/10.1371/journal.pone.0062250
  29. L. Werner, A. Machara, B. Sullivan, I. Carrera, M. Moser, D. R. Adams, T. Hudlicky, and J. Andraos, Several generations of chemoenzymatic synthesis of oseltamivir (Tamiflu): evolution of strategy, quest for a process-quality synthesis, and evaluation of efficiency metrics, J. Org. Chem., 76, 10050-10067 (2011). https://doi.org/10.1021/jo2018872