참고문헌
- T. H. Ma and M. M. Harris, Review of the genotoxicity of formaldehyde, Mutat. Res., 196, 37-59 (1988). https://doi.org/10.1016/0165-1110(88)90027-9
- C. L. Wiedemann, Formaldehyde toxicity, Oral Surg. Oral Med. Oral Pathol., 78, 554-555 (1994).
- A. Talaiekhozani, M. Salari, M. R. Talaei, M. Bagheri, and Z. Eskandari, Formaldehyde removal from wastewater and air by using UV, ferrate(VI) and UV/ferrate(VI), J. Environ. Manag., 184, 204-209 (2016). https://doi.org/10.1016/j.jenvman.2016.09.084
- Z. Xu and H. Hou, Formaldehyde removal from air by a biodegradation system, Bull. Environ. Contam. Toxicol., 85, 28-31 (2010). https://doi.org/10.1007/s00128-010-9975-2
- K. Ito, M. Takahashi, T. Yoshimoto, and D. Tsuru, Cloning and high-level expression of the glutathione-independent formaldehyde dehydrogenase gene from Pseudomonas putida, J. Bacteriol., 176, 2483-2491 (1994). https://doi.org/10.1128/jb.176.9.2483-2491.1994
- R. D. Barber, M. A. Rott, and T. J. Donohue, Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides, J. Bacteriol., 178, 1386-1393 (1996). https://doi.org/10.1128/jb.178.5.1386-1393.1996
- W. Zhang, S. Chen, Y. Liao, D. Wang, J. Ding, Y. Wang, X. Ran, D. Lu, and H. Zhu, Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa., Protein Expr. Purif., 92, 208-213 (2013). https://doi.org/10.1016/j.pep.2013.09.017
- M. Koivusalo and L. Uotila, Glutathione-dependent formaldehyde dehydrogenase/class III alcohol dehydrogenase: further characterization of the rat liver enzyme, Adv. Exp. Med. Biol., 328, 465-474 (1993).
- R. N. Patel, H. R. Bose, W. J. Mandy, and D. S. Hoare, Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus (Texas strain) and Pseudomonas species M27, J. Bacteriol., 110, 570-577 (1972).
- W. G. Gutheil, E. Kasimoglu, and P. C. Nicholson, Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza, Biochem. Biophys. Res. Commun., 238, 693-696 (1997). https://doi.org/10.1016/S0006-291X(00)90000-7
- L. Lessmeier, M. Hoefener, and V. F. Wendisch, Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase, Microbiology, 159, 2651-2662 (2013). https://doi.org/10.1099/mic.0.072413-0
- S. Ogushi, M. Ando, and D. Tsuru, Formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme, J. Biochem., 96, 1587-1591 (1984). https://doi.org/10.1093/oxfordjournals.jbchem.a134988
- N. Tanaka, Y. Kusakabe, K. Ito, T. Yoshimoto, and K. T. Nakamura, Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases, J. Mol. Biol., 324, 519-533 (2002). https://doi.org/10.1016/S0022-2836(02)01066-5
- N. Wen, W. Liu, Y. Hou, and Z. Zhao, The kinetics behavior of the reduction of formaldehyde catalyzed by alcohol dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH, Appl. Biochem. Biotechnol., 170, 370-380 (2013). https://doi.org/10.1007/s12010-013-0199-x
- K. Y. Choi et al., Development of colorimetric HTS assay of cytochrome p450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity, Chembiochem, 14, 1231-1238 (2013). https://doi.org/10.1002/cbic.201300212
-
H. Huang and D. Y. C. Leung, Complete oxidation of formaldehyde at room temperature using
$TiO_2$ supported metallic Pd nanoparticles, ACS Catal., 1, 348-354 (2011). https://doi.org/10.1021/cs200023p - T. Kawai et al., Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film, Environ. Sci. Technol., 40, 4281-4285 (2006). https://doi.org/10.1021/es050098n
- S. Tanada, N. Kawasaki, T. Nakamura, M. Araki, and M. Isomura, Removal of formaldehyde by activated carbons containing amino groups, J. Colloid Interface Sci., 214, 106-108 (1999). https://doi.org/10.1006/jcis.1999.6176
- A. M. Ewlad-Ahmed, M. A. Morris, S. V. Patwardhan, and L. T. Gibson, Removal of formaldehyde from air using functionalized silica supports, Environ. Sci. Technol., 46, 13354-13360 (2012). https://doi.org/10.1021/es303886q
- S. Shin and J. Song, Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon, J. Hazard. Mater., 194, 385-392 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.001
-
H. Dong, Y. H. Ding, and C. C. Sun,
$C_2H+H_2CO$ : a new route for formaldehyde removal, J. Chem. Phys., 122, 204321 (2005). https://doi.org/10.1063/1.1903945 - M. S. Quesenberry and Y. C. Lee, A rapid formaldehyde assay using purpald reagent: application under periodation conditions, Anal. Biochem., 234, 50-55 (1996). https://doi.org/10.1006/abio.1996.0048
- J. Pei and J. S. Zhang, Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal, HVAC&R Res., 17, 476-503 (2011).
-
C. B. Zhang, H. He, and K. Tanaka, perfect catalytic oxidation of formaldehyde over a Pt/
$TiO_2$ catalyst at room temperature, Catal. Commun., 6, 211 (2005). https://doi.org/10.1016/j.catcom.2004.12.012 -
C. B. Zhang, H. He, and K. Tanaka, Catalytic performance and mechanisms of a Pt/
$TiO_2$ catalyst for the oxdation of formaldehyde at room temperature, Appl. Catal. B, 65, 37-43 (2006). https://doi.org/10.1016/j.apcatb.2005.12.010 -
X. Tang, J. Chen, X. Huang, Y. Xu and W. Shen,
$Pt/MnO_{x}-CeO_{2}$ catalysts for the complete oxidaiton of formaldehyde at ambient temperature., Appl. Catal. B, 81, 115-121 (2006). - T. Li et al., Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization, J. Am. Chem. Soc., 134, 6467-6472 (2012). https://doi.org/10.1021/ja3010495
- M. Oslaj, J. Cluzeau, D. Orkic G. Kopitar, P. Mrak, and Z. Casar, A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis, PLoS One, 8, e62250 (2013). https://doi.org/10.1371/journal.pone.0062250
- L. Werner, A. Machara, B. Sullivan, I. Carrera, M. Moser, D. R. Adams, T. Hudlicky, and J. Andraos, Several generations of chemoenzymatic synthesis of oseltamivir (Tamiflu): evolution of strategy, quest for a process-quality synthesis, and evaluation of efficiency metrics, J. Org. Chem., 76, 10050-10067 (2011). https://doi.org/10.1021/jo2018872