DOI QR코드

DOI QR Code

Research on Pyrolysis Properties of Waste Plastic Films

폐플라스틱 필름의 열분해특성에 대한 연구

  • Kim, Young-Min (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Lee, Boram (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Han, Tae Uk (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Seungdo (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Yu, Tae-U (Korea Institute of Industrial Technology) ;
  • Bang, Byoung Yeol (Korea Institute of Industrial Technology) ;
  • Kim, Joug-Su (Korea Institute of Industrial Technology) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • Received : 2016.10.08
  • Accepted : 2016.11.10
  • Published : 2017.02.10

Abstract

Pyrolysis characteristics of waste plastic films were investigated by using a thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry. Thermogravimetric analysis results revealed that the pyrolysis of waste plastic films can be divided into two distinct reactions; (1) the decomposition reaction of starch at between 200 and $370^{\circ}C$ and (2) that of other plastic polymers such as PS, PP, PE at between 370 and $510^{\circ}C$. The kinetic analysis results obtained by using the revised Ozawa method indicated that the apparent activation energy of the pyrolysis reaction of waste plastic films was also changed dramatically according to the different decomposition reactions of two major waste plastic film components. Py-GC/MS results also revealed that the typical pyrolyzates of each polymer in waste plastic films were levoglucosan (starch), terephthalic acid (PET), styrene monomer, dimer, and trimer (PS), methylated alkenes (PP), and triplet peaks (PE) composed of alkadiene/alkene/alkane. The phthalate, used as a polymer additive, was also detected on the pyrogram of waste plastic films mixture.

열중량 분석기와 파이롤라이저-가스크로마토그래피/질량분석기를 이용하여 폐플라스틱 필름의 열분해 특성연구를 수행하였다. 열중량 분석 결과, 최근 사용량이 증가된 녹말 첨가 바이오 플라스틱의 영향으로 폐플라스틱 필름의 열분해는 $200^{\circ}C$에서 $370^{\circ}C$ 사이의 녹말 분해구간과 $370^{\circ}C$에서 $510^{\circ}C$ 사이의 PS, PP, PE와 같은 플라스틱계열의 고분자 분해구간을 가지는 것을 확인할 수 있었다. Revised Ozawa method를 이용한 동역학 분석 결과 폐플라스틱 필름의 열분해 반응 활성화 에너지는 녹말과 플라스틱계열 고분자의 다른 분해 반응에 의해 급격하게 변화되었다. 파이롤라이저-가스크로마토그래피/질량분석 결과 폐플라스틱 필름에 포함된 각 고분자의 열분해 부산물인 levoglucosan (녹말), terephthalic acid (PET), styrene monomer/dimer/trimer (PS), methylated alkenes (PP), alkadiene/alkene/alkane으로 구성된 triplet 피크 (PE)가 나타남을 확인할 수 있었다. 또한 고분자 첨가제로 사용되는 프탈레이트 성분도 검출되었다.

Keywords

References

  1. Korea Environment Corporation, Waste Generation and Treatment (2014).
  2. S. H. Shim, W. H. Kim, S. I. Keel, J. H. Yun, and S. H. Jeong, Recycling of waste mulching vinyl by pyrolysis or the dry process, J. Environ. Therm. Eng., 2, 55-61 (2005).
  3. I. H. Hwang, S. D. Kim, T. D. Kim, and D. H. Lee, Pyrolysis kinetics of agricultural plastic films, J. Korea Soc. Waste Manag., 20, 354-368 (2003).
  4. H. T. Kim, H. S. Lee, Y. S. Cho, and C. H. Park, Test operation of pilot plant for dry cleaning of waste agricultural mulch plastic films, J. Korean Soc. Environ. Eng., 2001, 11-12 (2001).
  5. T. S. Hwang and Y. S. Kim, Thermal degradation from agricultural waste polyethylene film and preparation of recycle wax by high temperature centrifuge method, J. Korea Soc. Waste Manag., 20, 222-230 (2003).
  6. M. Predel and W. Kaminsky, Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes, Polym. Degrad. Stab., 70, 373-385 (2000). https://doi.org/10.1016/S0141-3910(00)00131-2
  7. Y. S. You, Y. S. Oh, U. S. Kim, and S. W. Choi, National certification marks and standardization trends for biodegradable, oxo-biodegradable and bio-based plastics, Clean Technol., 21, 1-11 (2015). https://doi.org/10.7464/ksct.2015.21.1.001
  8. ASTM E872-82, Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (2006).
  9. ASTM D1102-84, Standard Test Method for Ash in the Wood (2013).
  10. S. Kim and J. K. Park, Characterization of thermal reaction by peak temperature and height of DTG curves, Thermochim. Acta, 264, 137-156 (1995). https://doi.org/10.1016/0040-6031(95)02316-T
  11. J. C. Lee and C. M. Pai, Trends of environment-friendly bioplastics, Appl. Chem. Eng., 27, 245-251 (2016). https://doi.org/10.14478/ace.2016.1034
  12. N. Miskolczi, A. Angyal, L. Bartha, and I. Valkai, Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor, Fuel Process. Technol., 90, 1032-1040 (2009). https://doi.org/10.1016/j.fuproc.2009.04.019
  13. D. Vega, M. A. Villar, M. D. Failla, and E. M. Valles, Thermogravimetric analysis of starch-based biodegradable blends, Polym. Bull, 37, 229-235 (1996). https://doi.org/10.1007/BF00294126
  14. H. Wong and L. J. Broadbelt, Tertiary resource recovery from waste polymers via pyrolysis: Neat and Binary mixture reactions of polypropylene and polystyrene, Ind. Eng. Chem. Res., 40, 4716-4726 (2001). https://doi.org/10.1021/ie010171s
  15. B.-S. Kim, Y.-M. Kim, H. W. Lee, J. Jae, D. H. Kim, S.-C. Jung, C. Watanabe, and Y.-K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustain. Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381
  16. X. Liu, L. Yu, F. Xie, M. Li, L. Chen, and X. Li, Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios, Starch, 62, 139-146 (2010). https://doi.org/10.1002/star.200900202
  17. P. Riazzarelli, M. Rapisarda, S. Perna, E. F. Mirabella, S. L. Carta, C. Puglisi, and G. Valenti, Determination of polyethylene in biodegradable polymer blends and in compostable carrier bags by Py-GC/MS and TGA, J. Anal. Appl. Pyrolysis, 17, 72-81 (2016).
  18. S. Tsuge, H. Ohtani, and C. Watanabe, Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates, Elsevier, Oxford, UK (2011).
  19. V. J. Triacca, P. E. Gloor, S. Zhu, A. N. Hrymak, and A. E. Hamielec, Free radical degradation of polypropylene: Random chain scission, Polym. Eng. Sci., 33, 445-454 (1993). https://doi.org/10.1002/pen.760330802
  20. T. Faravelli, M. Pinciroli, F. Pisano, G.Bozzano, M. Dente, and E. Ranzi, Thermal degradation of polystyrene, J. Anal. Appl. Pyrolysis, 60, 103-121 (2001). https://doi.org/10.1016/S0165-2370(00)00159-5
  21. Z. Yang, X. Liu, Z. Yang, G. Zhuang, Z. Bai, H. Zhang, and Y. Guo, Preparation and formation mechanism of levoglucosan from starch using a tubular furnace pyrolysis reactor, J. Anal. Appl. Pyrolysis, 102, 102 83-88 (2013). https://doi.org/10.1016/j.jaap.2013.03.012