DOI QR코드

DOI QR Code

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing

3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구

  • Kim, Sung Yong (Dept. of Mechanical Design & Engineering, Pukyong Nat'l Univ.) ;
  • Kang, Inpil (Dept. of Mechanical Design & Engineering, Pukyong Nat'l Univ.)
  • 김성용 (부경대학교 기계설계공학과) ;
  • 강인필 (부경대학교 기계설계공학과)
  • Received : 2016.08.08
  • Accepted : 2016.10.28
  • Published : 2017.03.01

Abstract

This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

본 논문에서는 탄소나노튜브 전왜성 복합소재(Nano-Carbon Piezoresistive Composite, NCPC)를 기반으로 하며, 3D 프린팅 공정을 활용하여 제작된 압력센서의 개발 진행 연구를 소개하였다. 압력센서의 성능을 향상시키기 위하여 센서전극을 외팔보 형태로 설계하였고 3D 프린팅 공정을 활용하여 소형전극을 제작하였다. 압력을 전기적 저항의 변화로 바꾸는 전왜성 센서의 전극은 2wt%의 다중벽 탄소나노튜브/에폭시 전왜성 복합소재로 제작하였다. 센서는 압력시스템에 용이하게 적용하기 위하여 파이프 플러그 캡에 삽입하여 제작을 하였으며, 실험실 환경에서 압력교정기를 활용하여 실험을 하였다. 외팔보 전극의 압력센서는 16,500kPa까지 선형적인 출력전압 특성을 보였으며, 이는 벌크형 전극의 압력센서 대비 약 200% 압력측정 성능 향상을 보였다.

Keywords

References

  1. Hur, J. G. and Yang, K. U., 2007, "The Technology Trend and Newest Product of Pressure Sensor," Journal of Drive and Control, Vol. 4, No. 3, pp. 2-10.
  2. YOLE Development., 2013, "What are the Business and Technology Trends that are Impacting the MEMS Business for the Next 5 Years."
  3. BSI., 2006, "Petroleum and Natural Gas Industries. Design and Operation of Subsea Production Systems. Subsea Production Control Systems."
  4. Sehwa, 1988, "Sensor's Principles and Instructions," ISBN : 2003718002210.
  5. Tombler, T. W., Zhou, C., Alexeyev, L., Kong, J., Dal, H., Liu, L., Jayanthl, C. S., Tang, M. and Wu, S. Y., 2000, "Reversible Electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipulation," Nature, Vol. 405, pp. 769-772. https://doi.org/10.1038/35015519
  6. Wood, J. R. and Wagner, H. D., 2000, "Single-wall Carbon Nanotube as Molecular Pressure Sensors," Applied Physics Letters, Vol. 76, No. 20, 2883. https://doi.org/10.1063/1.126505
  7. Kang, I., Schulz, M. J., Kim, J. H., Shanov, V. and Shi, D., 2006, "A Carbon Nanotube Strain Sensor for Structural Health Monitoring," Smart Materials and Structures, Vol. 15, No. 3, pp. 737-748. https://doi.org/10.1088/0964-1726/15/3/009
  8. Kang, I., Schulz, M. J., Lee, J. W., Choi, G. R. and Choi, Y. S., 2006, "Strain Sensors Using Carbon Nanotube Composites," Trans. Korean Soc. Noise Vibration Eng., Vol. 16, No. 7, pp. 762-768. https://doi.org/10.5050/KSNVN.2006.16.7.762
  9. Chang, W. S., Song, S. A., Kim, J. H. and Han, C. S., 2009, "Fabrication of Caron Nanotube Strain Sensors," Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 10, pp. 773-777. https://doi.org/10.3795/KSME-B.2009.33.10.773
  10. Kim, S. Y., Kim, H. H., Choi, B. G., Kang, I. H., Lee, I. Y. and Kang, I., 2016, "A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor," Journal of Drive and Control, Vol. 13, No. 1, pp. 43-48. https://doi.org/10.7839/ksfc.2016.13.1.043
  11. Jin, H. S., Lee, J. K., Lee, S. and Lee, K. C., 2014, "Output Characteristic of a Flexible Tactile Sensor Manufactured by 3D Printing Technique," J. Korean Soc. Precis. Eng., Vol. 31, No. 2, pp. 149-156. https://doi.org/10.7736/KSPE.2014.31.2.149
  12. Giovanni, P., Gabriele, N., Gianmarco, G., Marinella, L. and Stefano, T., 2015, "Conductive 3D Microstructures by Direct 3D Printing of Polymer/ carbon Nanotube Nanocomposites via Liquid Deposition Modeling," Composites: Part A, Vol. 76, pp. 110-114. https://doi.org/10.1016/j.compositesa.2015.05.014
  13. Zhang, D., Chi, B., Li, B., Gao, Z., Du, Y., Guo, J. and Wei, J., 2016, "Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing," Synthetic Metals, Vol. 217, pp. 79-86. https://doi.org/10.1016/j.synthmet.2016.03.014
  14. John, M. G., Godfrey, S., Kim, J. W., Roberto, J. C., Russel, A. W., Christopher, J. S., Brian, W. G., Dennis, C. W. and Emilie, J. S., 2016, "3-D Printing of Multifunctional Carbon Nanotube Yarn Reinforced Components," Additive Manufacturing, Vol. 12, pp. 38-44. https://doi.org/10.1016/j.addma.2016.06.008