DOI QR코드

DOI QR Code

Mating Disruption of Grapholita molesta by RNA Interference of a Fatty Acid Desaturase Expressed in Adult Abdomen

복숭아순나방 성충 복부에서 발현하는 불포화효소의 RNA 간섭과 교미교란

  • Kim, Kyusoon (Department of Plant Medicals, Andong National University) ;
  • Jung, Chung Ryul (National Institute of Forest Science) ;
  • Yang, Chang Yeol (National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kwon, Gimyeon (Bio Utilization Institute) ;
  • Kim, Yonggyun (Department of Plant Medicals, Andong National University)
  • 김규순 (안동대학교 식물의학과) ;
  • 정충렬 (국립산림과학원 산림약용자원연구소) ;
  • 양창열 (농촌진흥청 국립원예특작과학원) ;
  • 권기면 (생물이용연구소) ;
  • 김용균 (안동대학교 식물의학과)
  • Received : 2016.11.17
  • Accepted : 2017.02.08
  • Published : 2017.03.01

Abstract

Two major sex pheromone components (Z-8-dodecenyl acetate and E-8-dodecenyl acetate) are known in the peach fruit moth, Grapholita molesta. From a putative biosynthetic pathway of these sex pheromone components, delta 10 desaturase ($10{\Delta}$ DES) has been proposed to play a crucial role in synthesizing a species-specific stereoisomer of the double bond. However, its molecular identity was not known. This study determined a putative desaturase (Gm-comp1575) as a $10{\Delta}$ DES candidate from G. molesta transcriptome constructed from the sex pheromone gland. Its open reading frame encodes 370 amino acid sequence with a predicted molecular weight at 43.2 kDa and isoelectric point at 8.77. It was predicted to have four transmembrane domains and six glycosylation sites at N-terminal or cytosolic domains. A phylogenetic analysis with its predicted amino acid sequence indicated that Gm-comp1575 is closely related with known $10{\Delta}$ DES genes of other insects. Gm-comp1575 transcript was detected in female adults at sex pheromone gland and other abdominal tissues. RNA interference of Gm-comp1575 significantly reduced attractiveness of virgin females in apple orchard compared to control females. These results suggest that Gm-comp1575 is associated with sex pheromone biosynthesis of G. molesta.

복숭아순나방(Grapholita molesta)은 두 가지 주요 성페로몬 성분(Z-8-dodecenyl acetate and E-8-dodecenyl acetate)을 갖고 있다. 이 성페로몬 성분의 생합성 과정 분석은 포화지방산의 10번 탄소에 이중결합을 합성하는 불포화효소($10{\Delta}$ DES)가 종 특이적 광학이성체 형성에 필수적이라고 제시하였다. 그러나 이 효소의 분자적 특징에 대해서 분석되지 않았다. 본 연구는 복숭아순나방 성페로몬 샘의 전사체에서 $10{\Delta}$ DES로 추정된 불포화효소(Gm-comp1575)의 단백질 기능 영역을 분석하였다. Gm-comp1575 유전자는 370개의 아미노산 서열 정보를 암호하고 있으며 분자량은 약 43.2 kDa 그리고 등전위점(pI)은 8.77로 추정되었다. 이 불포화효소는 4개의 막투과영역을 지니고 있으며, 6개의 탄수화물 결합 위치가 아미노 말단과 세포내 영역에서 갖는 것으로 추정되었다. 분자계통분석은 Gm-comp1575가 다른 종에서 알려진 $10{\Delta}$ DES와 유사성이 높은 것으로 밝혀졌다. Gm-comp1575 전사체는 암컷 성페로몬 샘 및 다른 복부 조직에서 발현되었다. 이 유전자 발현에 대한 RNA 간섭 처리는 처녀 암컷으로 하여금 사과원에서 수컷을 유인하는 능력을 크게 감소시켰다. 이러한 결과는 Gm-comp1575가 복숭아순나방의 성페로몬 생합성과 관련이 있는 유전자라고 제시하고 있다.

Keywords

References

  1. Albre, J., Lienard, M.A., Sirey, T.M., Schmidt, S., Tooman, L.K., Carraher, C., Greenwood, D.R., Lofstedt, C., Newcomb, R.D., 2012. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet. 8, e1002489. https://doi.org/10.1371/journal.pgen.1002489
  2. El-Sayed, A.M., 2007. The pherobase: database of insect pheromones and semiochemicals. [http://www.pherobase.com/].
  3. Grimaldi, D., Engel, M.S., 2005. Evolution of the insects. Cambridge University Press, Cambridge.
  4. Hallman, G.J., 2004. Ionizing irradiation quarantine treatment against oriental fruit moth (Lepidoptera: Tortricidae) in ambient and hypoxic atmosphere. J. Econ. Entomol. 97, 824-827. https://doi.org/10.1093/jee/97.3.824
  5. Han, K.S., Jung, J.K., Choi, K.H., Lee, S.W., Boo, K.S., 2001. Sex pheromone composition and male trapping of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Korea. J. Asia Pac. Entomol. 4, 31-35. https://doi.org/10.1016/S1226-8615(08)60099-0
  6. Hashimoto, K., Yoshizawa, A.C., Okuda, S., Kuma, K., Goto, S., Kanehisa, M., 2008. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 49, 183-191. https://doi.org/10.1194/jlr.M700377-JLR200
  7. Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227-235. https://doi.org/10.1016/j.jinsphys.2009.10.004
  8. Jung, C.R., Ahn, J.J., Eom, H.S., Seo, J.H., Kim, Y., 2012. Occurrence of Grapholita dimorpha in Korean pear orchards and crosstrapping of its sibling species, Grapholita molesta, to a pheromone lure. Korean J. Appl. Entomol. 51, 479-484. https://doi.org/10.5656/KSAE.2012.10.0.049
  9. Jung, C.R., Kim, Y., 2014. Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics 103, 308-315. https://doi.org/10.1016/j.ygeno.2014.02.009
  10. Kachroo, A., Shanklin, J., Whittle, E., Lapchyk, L., Hildebrand, D., Kachroo, P., 2007. The Arabidopsis stearoyl-acyl carrier protein desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol. Biol. 63, 257-271.
  11. Kim, Y., Bae, S., Son, Y., Park, J., 2009. Analysis of miggration of the oriental fruit moth, Grapholita molesta, in apple-cultivating areas based on population monitoring using sex pheromone and RAPD molecular marker. Kor. J. Appl. Entomol. 48, 211-219. https://doi.org/10.5656/KSAE.2009.48.2.211
  12. Kim, Y., Jung, S., Kim, Y., Lee, Y., 2011. Real-time monitoring of oriental fruit moth, Grapholita molesta, populations using a remote sensing pheromone trap in apple orchards. J. Asia Pac. Entomol. 14, 259-262. https://doi.org/10.1016/j.aspen.2011.03.008
  13. Knight, A.L., Barros-Parada, W., Bosch, D., Escudero-Colomar, L.A., Fuentes-Contreras, E., Hernandez-Sanchez, J., Jung, C., Kim, Y., Kovanci, O.B., Levi, A., Lo, P., Molinari, F., Valls, J., Gemeno, C., 2014. Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull. Entomol. Res. 105, 23-31.
  14. Lienard, M.A., Strandh, M., Hedenstrom, Johansson, T., Lofstedt, C., 2008. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol. Biol. 8, 270. https://doi.org/10.1186/1471-2148-8-270
  15. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-{\Delta}{\Delta}CT$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  16. Lofstedt, C., Wahlberg, N., Millar, J.G., 2016. Evoultionary patterns of pheromone diversity in Lepidoptera, in: Allison, J.D., Carde, R.T. (Eds.), Pheromone communication in moths: evolution, behavior, and application. University of California Press, Oakland, CA. pp. 43-78.
  17. Park, B., Kim, Y., 2010. Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 105, 156-163. https://doi.org/10.1016/j.jip.2010.06.003
  18. Percy-Cunningham, J.E., MacDonald, J.A., 1987. Biology and ultrastructure of sex pheromone-producing glands, in: Prestwich, G.D., Blomquist, G.J. (Eds.), Pheromone biochemistry. Academic Press, Orlando, FL. pp. 27-75.
  19. Roelofs, W.L., 1995. Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA 92, 44-49. https://doi.org/10.1073/pnas.92.1.44
  20. Rothschild, G.H.L., Vickers, R.A., 1991. Biology, ecology and control of oriental fruit moth, in: Van der Geest, L.P.S., Evenhuis, H.H. (Eds.), Tortricid pests. Vol. 5: Their Biology, Natural Enemies and Control. Elsevier, Amsterdam, Netherlands, pp. 389-412.
  21. Scoble, M., 1992. The Lepidoptera: form, function and diversity Oxford University Press, Oxford.
  22. Sperling, P., Ternes, P., Zank, T.K., Heinz, E., 2003. The evolution of desaturases. Prostaglandins Leukot. Essent. Fatty Acids 68, 73-95. https://doi.org/10.1016/S0952-3278(02)00258-2
  23. Shanklin, J., Whittle, E., Fox, B.G., 1994. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787-12794. https://doi.org/10.1021/bi00209a009
  24. Turner, C.T., Davy, M.W., MacDiarmid, R.M., Plummer, K.M., Birch, N.P., Newcomb, R.D., 2006. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383-391. https://doi.org/10.1111/j.1365-2583.2006.00656.x
  25. Yang, C.Y., Jung, J.K., Han, K.S., Boo, K.S., Yiem, M.S., 2002. Sex pheromone composition and monitoring of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Naju pear orchards. J. Asia Pac. Entomol. 5, 201-207. https://doi.org/10.1016/S1226-8615(08)60153-3