DOI QR코드

DOI QR Code

A model for Phase Transformation of Microalloyed Low Carbon Steel Combined with Nb Precipitation Kinetics

Nb 석출 거동을 고려한 저탄소강의 상변태 모델

  • Received : 2016.11.25
  • Accepted : 2017.01.09
  • Published : 2017.02.01

Abstract

The dissolution and precipitation of Nb, which has been known as strong carbide-forming element, play a key role in controlling phase transformation kinetics of microalloyed steels. In this study, we analyzed both numerically and experimentally the precipitation behavior of Nb-microalloyed steel and its effect on the austenite decomposition during cooling. Nb precipitation in austenite matrix could be predicted by the thermo-kinetic software MatCalc, in which interfacial energy between precipitate and matrix is calculated. The simulated precipitation kinetics fairly well agrees with the experimental observations by TEM. Austenite decomposition, which is strongly affected by Nb precipitation during cooling, was measured by dilatometry and was modeled on the basis of a Johnson-Mehl-Avrami-Kolmorgorov(JMAK) equation. It was confirmed that the dissolved Nb delays the austenite decomposition, whereas, the precipitated Nb accelerates phase transformation during the austenite decomposition.

Keywords

References

  1. R. H. Wagoner, 2006, Report: Advanced High-Strength Steel Workshop, Arlington, Virginaia, USA, pp. 22-23.
  2. D. K. Matlock, J. G. Speer, 2006, Proc. Third International Conference on Advanced Structural Steels(editor: H.C. Lee), The Korean Institute of Metals and Materials, Seoul, Korea, pp. 774-781.
  3. S.-Y. Lee, S.-I. Lee, B. Hwang, 2016, Sensitivity of Microstructural Factors Influencing the Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure using Multiple Regression Analysis, Korean J. Met. Mater., Vol. 54, No. 9, pp. 637-644. https://doi.org/10.3365/KJMM.2016.54.9.637
  4. S. H. Kim, D. H. Kim, K.-C. Hwang, S.-B. Lee, S.-K. Lee, H. U. Hong, D.-W. Suh, 2016, Heat Treatment Response of TiC-Reinforced Steel Matrix Composite, Met. Mater. Int., Vol. 22, No. 5, pp. 935-941. https://doi.org/10.1007/s12540-016-6176-5
  5. A. J. Craven, K. He, L. A. Garvie, T. N. Baker, 2000, Complex Heterogeneous Precipitation in Titanium-niobium Microalloyed Al-killed HSLA Steels-I. (Ti,Nb)(C,N) Particles, Acta Mater., Vol. 48, No. 15, pp. 3857-3868. https://doi.org/10.1016/S1359-6454(00)00194-4
  6. S. S. Campos, E. V. Morales, H. J. Kestenbach, 2001, On strengthening mechanisms in commercial Nb-Ti hot strip steels, Metall. Mater. Trans. A, Vol. 32, No. 5, pp. 1245-1248. https://doi.org/10.1007/s11661-001-0133-7
  7. M. Charleux, W. J. Poole, M. Militzer, A. Deschamps, 2001, Precipitation Behavior and Its Effect on Strengthening of an HSLA-Nb/Ti Steel, Metall. Mater. Trans. A, Vol. 32, No. 7, pp. 1635-1647. https://doi.org/10.1007/s11661-001-0142-6
  8. J. G. Speer, J. R. Michael, S. S. Hansen, 1987, Carbonitride Precipitation in Niobium/vanadium Microalloyed Steels, Metall. Trans. A, Vol. 18A, No. 2, pp. 211-222.
  9. J. C. Herman, B. Donnay, V. Leroy, 1992, Precipitation Kinetics of Microalloying Additions during Hot-rolling of HSLA Steels, ISIJ Int., Vol. 32, No. 2, pp. 779-785. https://doi.org/10.2355/isijinternational.32.779
  10. S. F. Medina, J. E. Mancilla, 1994, Static Rrecrystall-Ization of Austenite and Strain Induced Precipitation Kinetics in Titanium Microalloyed Steels, Acta Metall. Mater., Vol. 42, No.12, pp. 3945-3951. https://doi.org/10.1016/0956-7151(94)90172-4
  11. J.-S. Park, Y.-S. Ha, S-J. Lee, Y.-K. Lee, 2009, Dissolution and Precipitation Kinetics of Nb(C,N) in Austenite of a Low-Carbon Nb-Microalloyed Steel, Metall. Mater. Trans. A, Vol. 40, No. 3, pp. 560-568. https://doi.org/10.1007/s11661-008-9758-0
  12. P. Fratzl, O. Penrose, J. L. Lebowitz, 1999, Modeling of Phase Separation in Alloys with Coherent Elastic Misfit, J. Stat. Phys., Vol. 95, No. 5, pp. 1429-1503. https://doi.org/10.1023/A:1004587425006
  13. L. Onsager, 1931, Reciprocal Relations in Irreversible Processes I, Phys. Rev., Vol.37, No. 4, p. 405. https://doi.org/10.1103/PhysRev.37.405
  14. J. Svoboda, F. D. Fischer, P. Fratzl, E. Kozeschnik, 2004, Modelling of Kinetics in Multi-component Multi-phase Systems with Spherical Precipitates: I: Theory, Mater. Sci. Eng. A, Vol. 385, No. 1-2, pp. 166-174. https://doi.org/10.1016/j.msea.2004.06.018
  15. E. Kozeschnik, J. Svoboda, P, Fratzl, F. D. Fischer, 2004, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: Numerical solution and application, Mater. Sci. Eng. A, Vol. 385, No. 1-2. pp. 157-165. https://doi.org/10.1016/j.msea.2004.06.016
  16. W. A. Johnson, R. F. Mehl, 1939, Reaction Kinetics in the Process of Nucleation and Growth, Trans. AIME., Vol. 135, pp. 416.
  17. H. N. Han, J. K. Lee, D.-W. Suh, S.-J. Kim, 2007. Diffusion-controlled Transformation Plasticity of Steel under Externally Applied Stress, Philos. Mag., Vol. 87, No. 1, pp. 159-176. https://doi.org/10.1080/14786430600953731
  18. T. A. Kop, J. Sietsma, S. van der Zwaag, 2001, Dilatometric Analysis of Phase Transformations in Hypo-eutectoid Steels, J. Mater. Sci., Vol. 36, No. 2, pp. 519-526. https://doi.org/10.1023/A:1004805402404
  19. D.-W. Suh, C.-S. Oh, H. N Han, S.-J. Kim, 2007, Dilatometric Analysis of Phase Fraction during Austenite Decomposition into Banded Microstructure in Low-Carbon Steel, Acta Mater., Vol. 55, No. 12, pp. 2659-2669. https://doi.org/10.1016/j.actamat.2006.12.007
  20. K. J. Irvine, F. B. Pickering, T. Gladman, 1967, Grain-refined C-Mn Steels, Iron Steel Inst. J., Vol. 205, pp. 161-82.
  21. K. Russel, 1980, Nucleation in Solids: The Induction and Steady State Effects, Adv. Colloid Sci., Vol. 13, No. 3-4, pp. 205-318. https://doi.org/10.1016/0001-8686(80)80003-0
  22. J.-H. Shim, E. Kozeschnik, W.-S. Jung, S.-C. Lee, D.-I. Kim, J.-Y. Suh, Y.-S. Lee, Y. W. Cho, 2010, Numerical Simulation of Long-term Precipitate Evolution in Austenitic Heat-resistant Steels, Calphad, Vol. 34, No. 1, pp. 150-112.
  23. B. Sonderegger, E. Kozeschnik, 2009, Size Dependence of the Interfacial Energy in the Generalized Nearest-neighbor Broken-bond Approach, Scr. Mater., Vol. 60, No.8, pp. 635-638. https://doi.org/10.1016/j.scriptamat.2008.12.025
  24. H. N. Han, J. K. Lee, H. J. Kim, Y.-S. Jin, 2002, A Model for Deformation, Temperature and Phase Transformation Behavior of Steels on Run-out Table in Hot Strip Mill, J. Mater. Process Tech., Vol. 128, No. 1-3, pp. 216-225. https://doi.org/10.1016/S0924-0136(02)00454-5
  25. H.-H. Cho, Y.-G. Cho, Y.-R. Im, J. K. Lee, J.-H. Kwak, H. N. Han, 2010. A Finite Element Analysis for Asymmetric Contraction after Coiling of Hot-rolled Steel, J. Mater. Process Tech., Vol. 210, No. 6-7, pp. 907-913. https://doi.org/10.1016/j.jmatprotec.2010.02.003
  26. H.-H. Cho, Y.-G. Cho, D.-W. Kim, S.-J. Kim, W.-B. Lee, H. N. Han, 2014, Finite Element Investigation for Edge Wave Prediction in Hot Rolled Steel during Run Out Table Cooling, ISIJ Int., Vol. 54, No. 7, pp. 1646-1652. https://doi.org/10.2355/isijinternational.54.1646
  27. D. P. Koistinen, R. E. Marburger, 1959. A General Equation Prescribing the Extent of the Austenite-martensite Transformation in Pure Iron-carbon Alloys and Plain Carbon Steels, Acta Metall. Mater., Vol. 7, No. 1, pp. 59-60. https://doi.org/10.1016/0001-6160(59)90170-1