Wangsania, a new genus of Apiaceae endemic to Korea

Byoung Yoon Lee ${ }^{1, *}$, Jina Lim ${ }^{1}$, Jaram Hong ${ }^{1}$, Myounghai Kwak 1 and Jin-Oh Hyun ${ }^{2}$
${ }^{1}$ Division of Plant Resources, National Institute of Biological Resources, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Republic of Korea
${ }^{2}$ Northeastern Asia Biology Institute, Songpa dae-ro 34-15, Songpa-gu, Seoul 05677, Republic of Korea
*Correspondent: bylee80@korea.kr

Abstract

Wangsania, a new genus of Apiaceae from limestone areas and typified by W. insolens (Kitagawa) B.Y. Lee \& J.O. Hyun, is described from Gangwon-do, Korea. Wangsania insolens was initially treated as Peucedanum insolens Kitagawa due to similarity with Peucedaunm cervaria, but it differs markedly in its unique morphological characters, such as rarely branched roots and a single basal leaf with 3 or -4 ternately dissected leaflets. These characters apparently represent apomorphies for Wangsania. The parsimony analysis of nuclaer ribosomal DNA ITS sequences revealed Wangsania to be not closely related to either Peucedanum or to any of 14 different tribes or clades within subfamily Apioideae.

Keywords: Apiaceae, New genus, Peucedaum insolens, Wangsania insolens
(C) 2017 National Institute of Biological Resources DOI:10.12651/JSR.2017.6.1.051

Introduction

Peucedanum, Apiaceae, Umbellales occurs in Euraisa and Africa (Pimenov and Leonov, 1993; Spalik et al., 2004). Members of the genus are characterized by flattened fruits without prominent dorsal ridges and with more or less developed lateral wings (Spalik et al., 2004). Peucedanum was regarded as an unnatural group and separated into several genera by Pimenov (1987), Frey (1989), and Magee et al. (2009). For example, most species of Peucedaum in North America are now treated in Lomatium. Furthermore, some European members were established as a new genus, Holandrea, based on morphological and phytochemical information (Reduron et al., 1997), while two species of Peucedaum from Madagascar were described as the new genus, Billburttia (Magee et al., 2009). The taxonomic complexity of Peucedaum is reflected in molecular evidence that showed the genus was not monophyletic and its members were scattered throughout molecular phylogeny trees (Downie et al., 2001; Spalik et al., 2004). Peucedaum was placed within the 'Angelica' clade sensu stricto (Downie et al., 2001), which was traditionally treated as Drude's (18971898) tribe Peucedaneae. Six species of Peисеdanит, P. coreanum, P. japonicum, P. terebinthaceum, P. elegans, P. hakuunense, and P. insolens (Lee et al., 2011) have been treated in Korea. Among them, P. insolens is unique in its leaf morphology due to single basal leaf with 3-4
ternately dissected leaflets, and mainly basal peduncles arising from a root crown. We treat these two characters as being unique features that separate it from other species of Peucedanum. The goal of our research was to confirm the taxonomic identity and determine the phylogenetic position of P. insolens by phylogenetic analyses using nuclear ribosomal DNA ITS sequences.

Materials and Methods

The unique morphological characters of P. insolens make its position within the genus Peucedanum uncertain. We therefore selected representatives of subfamily Apioideae for analysis. On the basis of previous phylogeneic analyses of chloroplast genes ($r b c \mathrm{~L}, \operatorname{matK}$), intron (rpl16, rps16, rpoC1) and nuclear ribosomal DNA internal transcribed spacer (ITS) sequences and chloroplast DNA restriction sites, Downie et al. (2001) reconfirmed the taxonomy of subfamily Apioideae at the tribal levels and recognized Aciphylleae, Bupleureae, Careae, Echinophoreae, Heteromorpheae, Oenantheae, Pleurospermeae, Pyramidopterae, Scandiceae, and Smyrnieae. Downie et al. (2001) also recognized seven additional clades that had previously been taxonomically untreated. Among the ten tribes and seven clades, we did not include members of the Echinophoreae due to a lack of molecular information and did not incorporate DNA se-

Table 1. Twenty three accessions of the family Apiaceae examined for nuclear ribosomal DNA internal transcribed spacer (ITS) sequences variation. Accessions from NCBI Genbank were started with single or two letters while newly investigated sequences started with letters of WIGIS (Wildlife Integrated Genetic Information System; National Institute of Biological Resources, Korea) or WBN (WIGIS Barcode Numbers). Asterisk ${ }^{(*)}$ means that the DNA sequences were submitted to the NCBI Genbank, but their publication could not be checked by authors of the current paper.

Tribe or clade	Taxon	Source or voucher information	Genbank or WIGIS accession number
Aciphylleae	Aciphylla aurea	Michell et al., 1998	U72377
Careae	Aegopodium alpestre	Ansan, Seorak mt. Gangwon-do (July 2. 2011)	WBN0329459
	Carum carvi	Valiejo-Roman et al., 1998	AF077878
	Grammosciadium macrodon	Downie et al., 2000	AF073553
Oenantheae	Conium maculatum	Ajani et al., 2008	EU 169251
Pleurospermeae	Pleurospermum yunnanense	Zhou et al., 2008	EU236202
Pyramidoptereae	Elaeosticta ramosissima	Degtjareva et al., 2013	HM229376
Scandiceae	Scandix australis	Wojewodzka et al., 2008	FJ415104*
	Daucus carota L.	Lee et al., 2004	AY552527*
Smyrnieae	Smyrnium olusatrum	Downie et al., 1998	U30594
Angelica clade	Angelica dahuria	Saryeoni forests, Jeju-do (Aug. 10. 2011)	WBN0329461
	Peucedanum terebinantheum	Daekwanryoung, Gangwon-do (Sep. 8. 2009)	WBN0329462
	Peucedanum insolens	Singi-myeon, Samcheok-si, Gangwon-do	WBN0329463
Apium clade	Foeniculum vulgare	Tabanca et al., 2005	AY581806
	Anethum graveolens	Reduron et al., 2009	GQ148795
	Petroselinum crispum	Reduron et al., 2009	GQ148798
Arracacia clade	Arracacia aegopodioides	Danderson et al., 2009	GQ862378*
	Rhodosciadium purpureum	Danderson et al., 2011	JQ305012*
Conioselinum clade	Conioselinum vaginatum	Zhou et al., 2009	FJ385041
Heracleum clade	Heracleum moellendorffi	Lee et al., 2012	WIGIS004981
	Pastinaca sativa	Ajani et al., 2008	EU169305
Komarovia clade	Komarovia anisosperma	Valiejo-Roman et al., 1998	AF077897
Pimpinella clade	Pimpinella brachycarpa	Daeamsan, Gangwon-do (Sep. 19. 2009)	WBN0329464

quences from the tribes Bupleureae and Heteromorpheae because of their unique morphological features. We therefore chose 22 representative taxa from seven tribes and seven clades within the Apioideae as proposed by Downie et al.(2001) to clarify the relationships of P. insolens (Table 1). The ITS sequences of 16 taxa were obtained from Genbank, seven additional taxa were sequenced in this study. Total genomic DNAs from the seven taxa were extracted from fresh leaves and tissue from herbarium specimens using the modified CTAB procedure of Doyle and Doyle (1987). Double stranded DNAs of the complete ITS regions in each genome were amplified by the polymerae chain reaction (PCR) using primers "ITS 5" and "ITS 4" (White et al., 1990). Details of the amplification reactions, purification, and alignment were the same as described in Lee (1998). Pairwise nucleotide differences of unambiguously aligned positions were determined from the distance matrix option in Phylogenetic Analysis Using Parsimony (PAUP*, Swofford, 2002). Phylogenetic analyses of the ITS sequences data sets were carried out using the heuristic search strategies of PAUP*. All searches were conducted with 100 randomaddition replicates using tree bisection-reconnection (TBR) branch swapping. A bootstrap analysis was done using 100 resampled data sets. All trees were rooted with Pleurospermum yunnanense, revealed as the most basal species within the Apioideae (Downie et al., 2001).

Results

1) ITS sequence analysis

Among 23 complete ITS sequences, the ITS 2 region was shorter than ITS 1 . The length of ITS 1 region in the taxa investigated ranged from 211 bp in Foeniculum vulgare to 221 bp in Pimpinella brachycarpa and Pastinaca sativa (mean 216 bp). The length of ITS 2 region of the taxa surveyed ranged from 217 bp in Elaeosticta ramosissima to 225 bp in Cicuta maculatum (mean 222 bp). Overall length variation of both spacer regions across all 23 accessions ranged from 432 bp to 444 bp . These sizes are comparable to the values reported for other Apiaceae (Downie et al., 1998; Lee and Downie, 1999). Of the 656 initial alignment positions, 73 positions were deleted due to alignment ambiguities. Of the remaining 583 unambiguously aligned positions, 195 (33.4 $\%$) were potentially parsimony informative, 288 (49.4\%) were constant, and $100(17.2 \%)$ were autapomorphic. Both spacers contributed comparable numbers of informative nucleotide substitutions to the phylogenetic analysis. Values of direct pairwise ITS sequence divergence of the examined 23 accessions (using PAUP's DISTANCE MATRIX option) are presented in Table 2. The sequence divergence values ranged from 2.2\% (between Foeniculum vulgare and Anethum graveolens) to 23.4% (between
Table 2. Pairwise sequence divergence of ITS 1, ITS 2, and 5.8 S ribosomal DNA regions among taxa included in the study. Mean distances ($100 \times$ values) are calculated above the diagonal, and actual numbers of unambiguous divergence sites from pairwise sequence comparisons appear below the diagonal. The orders of taxa listed on the table were followed from the strict consensus tree shown in the Fig. 1.

Taxa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1 Foeniculum vulgare	-	2.21	6.31	8.36	12.34	13.27	11.05	12.69	12.71	12.31	11.19	15.86	15.57	13.94	15.50	12.22	18.35	22.66	16.57	17.84	14.26	16.48	14.76
2 Anethum graveolens	12	-	6.64	8.27	12.75	13.10	10.93	11.81	12.20	11.81	10.52	15.50	15.21	13.41	15.33	12.08	18.52	21.85	17.13	18.20	14.66	15.93	14.60
3 Petroselinum crispum	34	35	-	8.70	12.48	12.66	10.82	12.64	12.85	12.45	11.15	14.68	14.95	13.35	14.31	12.17	18.88	22.06	17.07	17.42	14.39	16.45	14.73
4 Conioselinum vaginatum	45	45	47	-	9.41	9.43	6.84	7.37	7.38	7.55	6.26	11.99	12.05	11.00	12.33	10.78	15.79	19.33	14.52	15.78	11.87	14.12	12.43
5 Heracleum moellendorffii	66	69	67	51	-	4.79	9.43	10.54	10.00	10.72	9.80	14.97	14.71	12.15	16.51	13.19	17.35	21.64	15.51	16.00	14.33	15.48	14.71
6 Pastinaca sativa	71	71	68	51	26	-	10.02	12.78	11.69	12.22	10.93	15.52	14.71	13.83	16.32	15.42	18.18	21.78	17.19	16.51	16.38	17.62	17.10
7 Conium maculatum	59	59	58	37	51	54	-	9.98	10.00	10.54	9.06	14.07	13.17	12.84	14.41	11.71	16.07	21.37	15.67	16.69	13.80	15.42	13.91
8 Arracacia aegopodioides	68	64	68	40	57	69	54	-	5.15	6.06	4.77	16.08	15.61	12.71	16.10	13.56	16.94	20.26	16.04	18.45	14.31	16.38	14.31
9 Rhodosciadium purpureum	68	66	69	40	54	63	54	28	-	6.25	5.33	15.18	15.08	13.48	16.88	13.80	18.07	21.60	17.19	18.30	14.89	16.04	14.71
10 Angelica dahuria	66	64	67	41	58	66	57	33	34	-	4.59	15.89	15.79	12.52	16.29	14.33	18.62	20.63	16.79	19.20	14.12	16.01	14.49
11 Peucedanum terebinthaceum	60	57	60	34	53	59	49	26	29	25	-	13.30	12.82	10.28	14.04	12.29	17.31	19.88	15.85	17.13	12.26	14.33	12.82
12 Carum carvi	85	84	79	65	81	84	76	87	82	86	72	-	14.99	13.94	14.89	16.11	20.59	23.37	20.26	18.72	16.85	17.06	15.74
13 Grammosciadium macrodon	83	82	80	65	79	79	71	84	81	85	69	27	-	12.20	15.52	15.95	19.73	22.67	19.48	17.82	16.76	15.58	14.63
14 Aegopodium alpestre	74	72	71	59	65	74	69	68	72	67	55	75	66	-	13.80	13.43	17.79	21.64	16.66	16.94	15.35	15.08	14.31
15 Elaeosticta ramosissima	82	82	76	66	88	87	77	86	90	87	75	80	84	74	-	14.98	18.19	24.39	17.97	18.37	16.69	17.04	15.70
16 Peucedanum insolens	65	65	65	58	71	83	63	73	74	77	66	87	86	72	80	-	16.63	21.60	14.52	16.91	12.12	13.38	11.87
17 Daucus carota	98	100	101	85	93	98	86	91	97	100	93	111	106	95	97	89	-	20.59	16.79	17.66	16.41	16.48	15.77
18 Scandix australis	121	118	118	104	116	117	115	109	116	111	107	126	122	116	130	116	111	-	19.88	22.28	18.28	18.88	18.85
19 Smyrnium olusatrum	88	92	91	78	83	92	84	86	92	90	85	109	105	89	96	78	90	107	-	16.16	13.61	15.64	13.03
20 Komarovia anisosperma	94	97	92	84	85	88	89	98	97	102	91	100	95	90	97	90	94	119	86	-	14.87	14.76	14.74
21 Aciphylla aurea	76	79	77	64	77	88	74	77	80	76	66	91	90	82	89	65	88	98	73	79	-	11.75	8.56
22 Pimpinella brachycarpa	88	86	88	76	83	95	83	88	86	86	77	92	84	81	91	72	89	102	84	79	63	-	6.22
23 Pleurospermum yunnanese	79	79	79	67	79	92	75	77	79	78	69	85	79	77	84	64	85	102	70	79	46	34	-

Elaeosticta ramasissima and Scandix australis). The pairwise nucleotide divergence between Peucedaum insolens and other accessions varied from 10.8% with Conioselinum vaginatum to 21.6% with Scandix australis. The divergence between Peucedanum terebinthaceum and P.insolens was 12.3%.

2) Phylogenetic analyses and resolution

The results of the analyses of combined data sets are below; separate analyses of each spacer region were not done. The parsimony analysis of 23 combined ITS sequences and 5.8 S ribosomal DNAs using equally weighted character states resulted in three maximally parsimonious trees. The consensus of the three trees with accompanying bootstrap values is presented in Fig. 1. The most parsimonious tree had a length of 790 steps, a consistency index (CI) of 0.560 and 0.462 , with and without uninformative characters, respectively, and a retention index (RI) of 0.477. In each of the trees, two major groups of taxa were discernable. The first group in-
cluded five clades of Apium, Conioselinum, Heracleum, Angelica, Arracacia, and the tribes Oenantheae, Careae, and Pyramidoptereae. P. insolens was basal to the first group. The second group comprised the two tribes Scandiceae and Smyrnieae, and the Komarovia clade; tribes Aciphylleae and Pleurospermeae were sister to this group.

Discussion

The major objective in carrying out this study was to ascertain the taxonomic status and position of P. insolens, a species endemic to Korea. P. insolens has a unique leaf morphology that was not be observed in other species subfamily Apioideae. A single basal leaf with 3 or 4ternate dissection is well developed with a petiole 11.021.5 cm long arising from the root crown while cauline leaves conspicuously reduced. The long, cylindrical root and solitary stem are unusual and diagnostic characters for identifying P. insolens. In transverse section the fruit

Fig. 1. Strict consensus of three minimal length 790 -step trees derived from equally weighted maximum parsimony analysis of combined nuclear rDNA ITS and 5.8 S sequences (CI's with and without uninformative characters $=0.560$ and 0.462 , respectively; RI $=0.477$). Numbers above nodes indicate the number of times a monophyletic group occurred in 100 bootstrap replicates.
of P. insolens is strongly compressed dorsally and ho-mo-mericarpic. On the basis of the above morphological characteristics on specimens collected in the Deogwoo area in Gangwon-do Korea, Kitagawa (1972) proposed the new species, Peucedanum insolens. Kitagawa (1972), also, considered Peucedanum cervaria to be closely related to P. insolens in that both species share the similar characters of leaves in 3-ternate to pinnate dissection and the presence of small cauline leaves. Peucedanum cervaria and P. insolens share such features as the unequal base of the leaflets and scarcely developed dorsal ribs on the mericarps, but differs in several features (Tutin et al., 1968). For example, P. cervaria has a root stock with fibers, terminal and lateral inflorescences, and numerous bracts; P. insolens does not have a fibrous rootstock at the stock, only a terminal inflorescence, and no (or rarely 1-3) bracts. Furthermore, their geographic distributions are different; P. cevaria ranges from central Europe to Ukraine while P. insolens is restricted to limestone areas in Korea. Traditionally, Peucedanum has been delimited by laterally expanded wings on the fruits, which was considered to be an adaptation for wind dispersal and likely evolved independently and locally in several umbellifers (Theobald, 1971; Lee, 2002; Spalik et al., 2004; Liu et al., 2006). Therefore, it is not surprising that P. insolens is placed distantly from other members of Peucedanum. The strict consensus of maximum parsimonious trees (MP) revealed that P. insolens was not closely related to any of the tribes included in the current study. The pairwise distance of P. insolens from each clades and tribes ranged from 10.8% (Conioselinum clade) to 21.6% (tribe Scandiceae). These values were much higher than the intergeneric pairwise distance within clades (2.2-6.6\% in Apium clade, 4.6% in Angelica clade, 5.2% in Arracacia clade). Thus, the evidence that P. insolens is distinct from other tribes and clades of Apioideae is conclusive. The ITS polymorphisms in intraspecific levels of the family Apiaceae have been so few that even weak bootstrap support for the taxonomic position has not misled phylogenetic inferences (Chung et al., 2005; Spalik and Downie, 2006; Winter et al., 2008). Therefore, extremely high pairwise distance of ITS and strong bootstrap values support separation of P. insolens from other taxa of apioides. Comparisons of P. insolens with the other tribes or clades clearly indicate that it represents a distinct new genus or even higher taxonmic placement (e.g., subtribe or tribe) easily recognized by current molecular phylogenies and unique morphological characters such as rarely branched roots, a single basal leaf with 3-4 ternately dissected leaflets and fruit anatomy. The new combination for P. insolens is made to establish the genus Wangsania B.Y. Lee \& J.O. Hyun (Fig. 2).

Taxonomic Treatment

Wangsania B.Y. Lee \& J.O. Hyun, gen. nov. TYPE: Peucedanum insolens Kitagawa [= Wangsania insolens (Kitagawa) B.Y. Lee \& J.O. Hyun].

Herbs perennial. Roots rarely branched, long cylindrical, $10-50 \mathrm{~cm}$ long and $1-2.5 \mathrm{~cm}$ in diameter, thickest at base, wrinkled horizontally. Stems absent or solitary, 9.9-22.5 cm tall, slender, glabrous. Leaves basal, single or rarely two, 4-ternately dissected; petiole $15.9-27.5 \mathrm{~cm}$ long, arising from root crown; leaflets $3-10 \mathrm{~mm}$ long, $3-4 \mathrm{~mm}$ wide, petiolulate at all branch levels; petiolule I 6.3-10.2 cm long, II $3.4-5.7 \mathrm{~cm}$ long, III $2.6-4.4 \mathrm{~cm}$ long, IV $0.5-$ 2.6 cm long; blade $3.7-5 \mathrm{~cm}$ long, $1.8-3.2 \mathrm{~mm}$ wide, base oblique, margins serrate; cauline leaves absent or conspicuously reduced, petiole $0.3-4.7 \mathrm{~cm}$ long. Inflorescences terminal, compound umbels; rays $8-10,3-5 \mathrm{~cm}$ long, unequal in length, glabrous; bracts absent or 1-3, filiform to subulate, $2-7 \mathrm{~mm}$ long, $0.2-0.5 \mathrm{~mm}$ wide, margins membranous; bracteoles absent or $1-4$, subulate to linear, 3-6 mm long, $0.2-0.7 \mathrm{~mm}$ wide; pedicels $10-25$, 2-10 mm long, unequal in length. Flowers bisexual; calyx teeth triangular, persistent, base fleshy, green; petals white, elliptic to oval, or obtriangulate, apex emarginate, incurved-apex $0.7-0.8 \mathrm{~mm}$ long; style filiform, base thickened, stylopodium conical. Fruit oval, 7-8 mm long, 5 mm wide; mericarps strongly compressed dorsally; dorsal ridges filiform, not winged; lateral ridges extened into broad wings, 1 mm wide, vittae 1 , tiny or indistinct on each of dorsal valleculae, 2 on commissural face.

Etymology

The genus name is derived from the place of discovery of the type species, Wangsan-myeon, Gangwon-do, Korea.

Distribution

Wangsania insolens is endemic to limestone areas in Gangwon-do, Chungcheongbuk-do, and Gyeongsang-buk-do, Korea.

Phenology

Flowering in July-September; fruiting in August-October.

Selected specimens examined

KOREA. Gangwon-do: Hadong-myeon, Daeya-ri, Gajaegol, elev. 219 m, 27 Jul. 2010, Nam K. H. et al. SHY902 (2 sheets) (KB); Jeongseon-gun, Buk-myeon, Goyang-ri, Mt. Ballon, elev. 984 m, 6 Sep. 2012, Kim J. H. \& Kim Y. R. SHY3-1932 (KB); Jeongseon-gun, Buk-myeon, Goyang-ri, Mt. Sangjeongbawi, elev. 984 m, 11 Oct. 2012, Kim J. H. \& Kim J. S. SHY3-2284 (KB);

Fig. 2. Wangsania insolens (Kitagawa) B.Y. Lee \& J.O. Hyun. A. Habit: a basal leaf, single, 4-ternately dissected, petiolulated leaflets arising from the root stock, a cauline leaf absent or conspicuously reduced if present. B. Root: a rarely branched and long cylindrical shape. C. half of a leaflet. D. individual flowers. E. Inflorescence. F. Fruits.

Jeongseon-gun, Dong-myeon, Hwaam-ri, elev. 652 m, 10 Oct. 2010, Hyun J. O. NAPI-J20111611 (KB); Jeongseongun, Jeongseon-eup, Deogu-ri, Deoksangi valley, elev.

341 m, 11 Oct. 2012, Nam K. H. \& Kim Y. R. SHY32255 (KB); Yeongwol-gun, Donghae-si, Cheongok-dong, Cheongok cave, elev. 50 m, 24 Aug. 2011, Nam G. H. \&

Kim J. H. SHY2-1190 (KB).

Acknowledgements

This research was supported by grants from the project called "Inventory and management of endemic species of Korea" of National Institute of Biological Resources (NIBR201506101) under the Ministry of Environment, Korea. We thank the colleagues of the Plant Resources division of NIBR for the valuable comments, and three anonymous reviewers for their critical reading of the manuscript and helpful suggestions.

References

Ajani, Y., A. Ajani, J.M. Cordes, M.F. Watson and S.R. Downie. 2008. Phylogenetic analysis of nrDNA ITS sequences reveals relationships within five groups of Iranian Apiaceae subfamily Apioideae. Taxon 57(2):383-401.
Chung, K.-F., C.-I. Peng, S.R. Downie, K. Spalik and B.A. Schaal. 2005. Molecular systematics of the trans-Pacific Alpine genus Oreomyrrhis (Apiaceae): phylogenetic affinities and biogeographic implications. Amer. J. Bot. 92:2054-2071.
Degtjareva, G.V., E.V. Kljuykov, T.H. Samigullin, C.M. Va-liejo-Roman and M.G. Pimenov. 2013. ITS phylogeny of Middle Asian geophilic Umbelliferae- Apioideae genera with comments on their morphology and utility of psbAtrnH sequences. Plant Syst. Evol. 299(5):985-1010.
Downie, S.R., S. Ramanath, D.S. Katz-Downie and E. Llanas. 1998. Molecular systematics of Apiaceae subfamily Apioideae: phylogenetic analysis of nuclear ribosomal DNA internal transcribed spacer and plastid rpoCl intron sequences. American Journal of Botany 85:563-591.
Downie, S.R., D.S. Katz-Downie and K. Spalik. 2000. A phylogeny of Apiaceae tribe Scandiceae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am. J. Bot. 87(1):76-95.
Downie, S.R., G.M. Plunkett, M.F. Watson, K. Spalik, D.S. Katz-Downie, C.M. Valiejo-Roman, E.I. Terentieva, A.V. Troitsky, B.-Y. Lee, J. Lahham and A. El-Oqlah. 2001. Tribes and clades within Apiaceae subfamily Apioideae: the contribution of molecular data. Edinb. J. Bot. 58:301330.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.
Drude, C.G.O. 1897-1898. Umbelliferae. In: A. Engler and K. Prantl (eds.), Die natürlichen Pflanzenfamilien, vol. 3 . Wilhelm Engelmann, Leipzig, pp. 63-250.
Frey, R. 1989. Taxonomische Revision der Gattung Peucedanum: Sektion Peucedanum und Sektion Palimbioidea (Umbelliferae). Candollea 44:257-327.

Kitagawa, M. 1972. Notulae fractae ob floram Asiae orientalis. 29. J. Jap. Bot. 47:353-357.
Lee, B.Y. 1998. A phylogenetic study of Apiaceae tribe Caucalideae. Ph.D. thesis, University of Illinois at Urba-na-Champaign.
Lee, B.Y. 2002. Taxonomic review on the African Umbelliferous genus Agrocharis: Inferences based on molecular data. Israel J. Bot. 50:211-216.
Lee, B.Y. and S.R. Downie. 1999. A molecular phylogeny of Apiaceae tribe Caucalideae and related taxa: inferences based on ITS sequence data. Syst. Bot. 24:461-479.
Lee, B.Y., G.H. Nam, J.Y. Lee, C.H. Park, C.E. Lim, M.H. Kim, S.J. Lee, T.K. Rho, J.A. Lim, J.E. Han and J.H. Kim. 2011. National List of Species of Korea (Vascular plants). National Institute of Biological Resources, Incheon, pp. 633.
Lee, B.Y., C.E. Lim, J.-H. Yun, J.-H. Kim, S.-Y. Kim and J.E. Han. 2012. Taxonomic review of the umbelliferous taxa Heracleum moellendorffii complex in Korea based on molecular phylogenies of nuclear ribosomal ITS sequences. Journal of Species Research 1(2):232-239.
Liu, M., G.M. Plunkett, P.P.II. Lowry, B.-E. Van Wyk and P.M. Tilney. 2006. The taxonomic value of fruit wing types in the order Apiales. Amer. J. Botany 93(9):13571368.

Magee, A.R., B.-E. van Wyk, P.M. Tilney, F. Sales, I. Hedge and S.R. Downie. 2009. Billburttia, a new genus of Apiaceae (tribe Apieae) endemic to Madagascar. Plant Systematics and Evolution 283:237-245.
Mitchell, A.D., C.J. Webb and S.J. Wagstaff. 1998. Phylo-genetic-relationships of species of Gingidia and related genera (Apiaceae, subfamily Apioideae). New Zealand Journal of Botany 3(36):417-424.
Pimenov, M.G. 1987. Cervaria. In: K.H. Rechinger (ed.), Flora iranica, vol. 162. Akademische Druck- und Verlagsanstalt, Graz, pp. 83-110.
Pimenov, M.G. and M.V. Leonov. 1993. The genera of the Umbelliferae. Royal Botanic Gardens, Kew. London, pp. 105.

Reduron, J.-P., A. Charpin and M.G. Pimenov. 1997. Contribution à la nomenclature générique des Apiaceae (Ombellifè res). J. Bot. Soc. bot. Fr. 1:91-104.
Spalik, K., J.-P. Reduron and S.R. Downie. 2004. The phylogenetic position of Peucedanum sensu lato and allied genera and their placement in tribe Selineae (Apiaceae, subfamily Apioideae). Plant Systematics and Evolution 243:189-210.
Spalik, K. and S.R. Downie. 2006. The evolutionary history of Sium sensu lato (Apiaceae): dispersal, vicariance, and domestication as inferred from ITS rDNA phylogeny. Amer. J. Bot. 93:747-761.
Swofford, D.L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts.
Tabanca, N., A.W. Douglas, E. Bedir, F.E. Dayan, N. Kirimer,
K.H.C. Baser, Z. Aytac, I.A. Khan and B.E. Scheffler. 2005. Patterns of essential oil relationships in Pimpinella (Umbeliferae) based on phylogenetic relationships using nuclear and chloroplast sequences. Plant Genet. Resour. 3:149-169.
Theobald, W.L. 1971. Comparative anatomical and developmental studies in the Umbelliferae. In: V.H. Heywood (ed.), The biology and chemistry of the Umbelliferae, Supplement 1 to the Botanical Journal of the Linnean Society, Vol. 64, Academic Press, New York, NY. Pp. 177-197.
Tutin, T.G. 1968. Peucedanum L. In: V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters and D.A. Webb (eds.), Flora Europaea. Vol. 2. Cambridge University Press, Cambridge, pp. 360-364.
Valiejo-Roman, K.M., M.G. Pimenov, E.I. Terentieva, S.R. Downie, D.S. Katz-Downie and A.V. Troitsky. 1998. Molecular systematics of Umbelliferae: using nuclear rDNA internal transcribed spacer sequences to resolve issues of evolutionary relationships. Bot. Z. 83(7):1-22.
White, T.J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA
genes for phylogenetics. In: M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White (eds.), PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315-322.
Winter, P.J.D., A.R. Magee, N. Phephu, P.M. Tilney, S.R. Downie and B.-E. Van Wyk. 2008. A new generic classification for African peucedanois species (Apiaceae). Taxon 57(2):347-364.
Zhou, J., H. Peng, S.R. Downie, Z.W. Liu and X. Gong. 2008. A molecular phylogeny of Chinese Apiaceae subfamily Apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon 57(2):402416.

Zhou, J., X. Gong, S.R. Downie and H. Peng. 2009. Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apioideae: additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. Mol. Phylogenet. Evol. 53(1):56-68.

Submitted: May 23, 2016
Revised: August 25, 2016
Accepted: February 7, 2017

