References
- Asagiri M and Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40, 251-264 https://doi.org/10.1016/j.bone.2006.09.023
- Boyle WJ, Simonet WS and Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
- Kobayashi N, Kadono Y, Naito A et al (2001) Segregation of TRAF6-mediated signalling pathways clarifies its role in osteoclastogenesis. EMBO J 20, 1271-1280 https://doi.org/10.1093/emboj/20.6.1271
- Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24, 33-63 https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Asagiri M, Sato K, Usami T, Ochi S, Nishina H and Yoshida H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202, 1261-1269 https://doi.org/10.1084/jem.20051150
- Ayer A, Zarjou A, Agarwal A and Stocker R (2016) Heme oxygenases in cardiovascular health and disease. Physiol Rev 96, 1449-1508 https://doi.org/10.1152/physrev.00003.2016
- Kim YM, Pae HO, Park JE et al (2011) Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 14, 137-167 https://doi.org/10.1089/ars.2010.3153
- Van Phan T, Sul OJ, Ke K et al (2013) Carbon monoxide protects against ovariectomy-induced bone loss by inhibiting osteoclastogenesis. Biochem Pharmacol 85, 1145-1152 https://doi.org/10.1016/j.bcp.2013.01.014
-
Tseng FJ, Chia WT, Wang CH et al (2015) Carbon monoxide inhibits receptor activator of NF-
${\kappa}B$ (RANKL)-induced osteoclastogenesis. Cell Physiol Biochem 36, 1250-1258 https://doi.org/10.1159/000430294 - Ke K, Safder MA, Sul OJ et al (2015) Hemeoxygenase-1 maintains bone mass via attenuating a redox imbalance in osteoclast. Mol Cell Endocrinol 409, 11-20 https://doi.org/10.1016/j.mce.2015.03.022
- Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 92, 860-867 https://doi.org/10.1177/0022034513500306
- Ryter SW, Alam J and Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86, 583-650 https://doi.org/10.1152/physrev.00011.2005
- Lee S, Lee SJ, Coronata AA et al (2014) Carbon monoxide confers protection in sepsis by enhancing beclin 1-dependent autophagy and phagocytosis. Antioxid Redox Signal 20, 432-442 https://doi.org/10.1089/ars.2013.5368
- Choi YK, Maki T, Mandeville ET et al (2016) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med 22, 1335-1341 https://doi.org/10.1038/nm.4188
- Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901 https://doi.org/10.1016/S1534-5807(02)00369-6
-
Santoro MG, Rossi A and Amici C (2003) NF-
${\kappa}B$ and virus infection: who controls whom. EMBO J 22, 2552-2560 https://doi.org/10.1093/emboj/cdg267 - Nakahira K, Kim HP, Geng XH et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203, 2377-2389 https://doi.org/10.1084/jem.20060845
-
Chi PL, Liu CJ, Lee IT, Chen YW, Hsiao LD and Yang CM (2014) HO-1 induction by CO-RM2 attenuates TNF-
${\alpha}$ -induced cytosolic phospholipase A2 expression via inhibition of$PKC{\alpha}$ -dependent NADPH oxidase/ROS and NF-${\kappa}B$ . Mediators Inflamm 2014, 279171 - Lee NK, Choi YG, Baik JY et al (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859 https://doi.org/10.1182/blood-2004-09-3662
- Ha H, Kwak HB, Lee SW et al (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 301, 119-127 https://doi.org/10.1016/j.yexcr.2004.07.035
- Stocker R, Yamamoto Y, McDonagh AF, Glazer AN and Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046 https://doi.org/10.1126/science.3029864
-
Yeh PY, Li CY, Hsieh CW, Yang YC, Yang PM and Wung BS (2014) CO-releasing molecules and increased heme oxygenase-1 induce protein S-glutathionylation to modulate NF-
${\kappa}B$ activity in endothelial cells. Free Radic Biol Med 70, 1-13 https://doi.org/10.1016/j.freeradbiomed.2014.01.042 - Kang N, Koo J, Wang S, Hur SJ and Bahk YY (2016) A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics. BMB Rep 49, 319-324 https://doi.org/10.5483/BMBRep.2016.49.6.240
- Park GS, Kim JK and Kim JH (2016) Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade. BMB Rep 49, 232-237 https://doi.org/10.5483/BMBRep.2016.49.4.002
Cited by
- Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12160-6
- Heme oxygenase-1 attenuates the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in multiple myeloma cells: Corelated with bortezomib tolerance in multiple myeloma pp.07302312, 2018, https://doi.org/10.1002/jcb.27879
- Uncoupled Endothelial Nitric Oxide Synthase Enhances p-Tau in Chronic Traumatic Encephalopathy Mouse Model pp.1557-7716, 2018, https://doi.org/10.1089/ars.2017.7280
- in LPS-Stimulated RAW264.7 Macrophages vol.15, pp.9, 2018, https://doi.org/10.1002/cbdv.201800203
- Protective role of heme oxygenase-1 in fatty liver ischemia–reperfusion injury pp.1860-1499, 2018, https://doi.org/10.1007/s00795-018-0205-z
- Sargassum serratifolium attenuates RANKL-induced osteoclast differentiation and oxidative stress through inhibition of NF-κB and activation of the Nrf2/HO-1 signaling pathway vol.12, pp.3, 2018, https://doi.org/10.5582/bst.2018.01107
- Various roles of heme oxygenase-1 in response of bone marrow macrophages to RANKL and in the early stage of osteoclastogenesis vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29122-1