DOI QR코드

DOI QR Code

Study on Electrical Impedance Matching for Broadband Ultrasonic Transducer

광대역 초음파 변환기를 위한 전기 임피던스 정합 연구

  • Received : 2016.11.17
  • Accepted : 2017.01.25
  • Published : 2017.02.28

Abstract

Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of ${\mu}m$) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately $50{\Omega}$ to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

초음파탐상법을 이용하여 마이크로미터의 크기 작은 결함을 검출하기 위해서는 높은 공진주파수와 큰 분해능의 초음파 변환기가 필요하다. 초음파 변환기의 공진주파수와 분해능은 변환기에 사용된 압전소자의 두께, 후면재 및 탐상 시스템 간의 전기 임피던스 정합과 밀접한 관련이 있으며, 이 중 전기 임피던스 매칭은 초음파 변환기와 초음파탐상 시스템 사이의 서로 다른 입 출력단을 연결하는 과정에서, 두 연결단의 전기적 임피던스 차이에 의한 에너지 반사와 손실을 줄이는 중요한 역할을 한다. 임피던스 정합에서 흔히 많이 사용하는 방법은 LC-정합회로이다. 이러한 LC-정합을 통해 탐상 시스템과 초음파 변환기의 전기 임피던스를 $50{\Omega}$으로 맞추어 두 연결단 사이의 임피던스 차이를 보정해 줌으로서 초음파 변환기에서 발생되는 전기신호의 손실을 줄 수 있다. 본 연구에서는 15 MHz의 공진주파수를 가지는 광대역 수침형 초음파 탐촉자를 제작하고 광대역 특성을 갖는 초음파 변환기를 위한 LC 임피던스 정합법을 적용하였다.

Keywords

References

  1. A. Manbachi and R. S. C. Cobbold, "Development and application of piezoelectric materials for ultrasound generation and detection," Ultrasound, Vol. 19, No. 4, pp. 187-196 (2011) https://doi.org/10.1258/ult.2011.011027
  2. A. L. Bernassau, T. Button, K. Choi, S. Cochran, C. Demore, L. G. Gancedo, D. Hutson, T. Jackson, H. Kim, I. Kim, C. Meggs, S. T. Mckinstry and R. Tutwiler, "Operation of a high frequency piezoelectric ultrasound array with an application specific integrated circuit," In Proceedings of the 2009 IEEE International Ultrasonics Symposium (IUS), pp. 1-4 (2009)
  3. H. J. Dong, J. Wu, H. Zhang and G. Y. Zhang, "Design and development of a multi-hole broadband-based ultrasonic transducer," Ultrasonics Sonochemistry, Vol. 18, No. 2, pp. 562-566 (2011) https://doi.org/10.1016/j.ultsonch.2010.10.002
  4. Y. Pan, X. Mo, Y. Chai, Y. Liu and Z. Cui, "A new design on broadband flextensional transducer," Applied Acoustics, Vol. 72, No. 11, pp. 836-840 (2011) https://doi.org/10.1016/j.apacoust.2011.05.007
  5. J. Assaad, M. Ravez, C. Bruneel, J. M. Rouvaen and F. Haine, "Influence of the thickness and the attenuation coefficient of a backing on the response of transducers," Ultrasonics, Vol. 34, No. 2-5, pp. 103-106 (1996) https://doi.org/10.1016/0041-624X(96)00009-1
  6. G. C. Low and R. V. Jones, "Design and construction of short pulse ultrasonic probes for non-destructive testing," Ultrasonics, Vol. 22, No. 2, pp. 85-96 (1984) https://doi.org/10.1016/0041-624X(84)90026-X
  7. G. Petersen, "L-Matching the Output of a RITEC Gated Amplifier to an Arbitrary Load," www.ritecinc.com/pdfs/match3.pdf
  8. J. An, K. Song, S. Zhang, J. Yang and P. Cao, "Design of a broadband electrical impedance matching network for piezoelectric ultrasound transducers based on a genetic algorithm," Sensors, Vol. 14, No. 4, pp. 6828-6843 (2014) https://doi.org/10.3390/s140406828
  9. G. Kossoff, "The effects of backing and matching on the performance of piezoelectric ceramic transducers," IEEE Trans. on Sonic and Ultrasonics, Vol. 13, No. 1, pp. 20-30 (1966) https://doi.org/10.1109/T-SU.1966.29370
  10. C. S. Desilets, J. D. Fraser and G. S. Kino, "The design of efficient broad-band piezoelectric transducers," IEEE Trans. on Sonics and Ultrasonics, Vol. 25, No. 3, pp. 115-125 (1978) https://doi.org/10.1109/T-SU.1978.31001
  11. M. G. Crewe, T. R. Gururaja, T. R. Shrout and R. E. Newnham, "Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications," IEEE Trans. on Ferroelectrics and Frequency Control, Vol. 37, No. 6, pp. 506-513 (1990) https://doi.org/10.1109/58.63106
  12. K.-B. Kim, D. K. Hsu, B. Ahn, Y.-G. Kim and D. J. Banard, "Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications," Ultrasonics, Vol. 50, No. 6, pp. 790-797 (2010) https://doi.org/10.1016/j.ultras.2010.04.001
  13. P. Horowitz and Winfield Hill, "The Art of Electronics," 2nd Edition, Cambridge University Press, The Pitt Building, Trumpington Street, Cambridge CB2 1RP, pp. 29-44 (1990)
  14. RFDH, "RF Database," http://www.rfdh.com/ (Accessed 23 Sep. 2016)
  15. NDT Encyclopedia, "Bandwidth," http://www.ndt.net/ndtaz/content.php?id=53 (Accessed 23 Sep. 2016)
  16. K.-B. Kim, B. Y. Ahn, Y.-G. Kim, S.-K. Park and J.-S. Ha, "Study on ultrasonic transducer for non-destructive evaluation of highly attenuative material using PMN-PT single crystal," Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 4, pp. 313-320 (2007)