DOI QR코드

DOI QR Code

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site

경주 방폐장의 불균질 배경 단열의 정량화

  • Received : 2017.12.06
  • Accepted : 2017.12.19
  • Published : 2017.12.30

Abstract

Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

본 연구는 화강암과 퇴적암지역에 위치하는 중저준위 경주방폐장의 불균질 배경 단열의 방향성, 밀도, 크기를 정량적으로 분석하였다. 불균질 배경 단열을 분석하기 위하여 지표지질조사, 전기비저항탐사, 공내 초음파주사검층 자료를 이용하였다. 연구지역 배경 단열의 정량화 분석을 위해서 부트스트랩 방법을 적용하였으며, 이에 의하여 위치에 따라 다양한 방향성을 가지는 단열들의 이방성을 합리적으로 특성화할 수 있었다. 단열 밀도는 단층 연장성을 고려한 단층거리의 역산값 및 전기비저항 평균값과 상관성을 보였으며, 평균 부피 단열 밀도($P_{32}$)는 $3.1m^2/m^3$로 나타났다. 중저준위 방폐물 처분 지하 사일로에서 측정된 단열과 지표 단층 정보에 의하면, 단열크기는 단열의 프랙탈 성질에 기초한 멱함수 법칙 분포에 따르며, 배경 단열의 반경은 1.5~86 m로 산정되었다.

Keywords

References

  1. Cheong, J. -Y., Hamm, S. -Y., Lim, D. -H., and Kim, S. -G., 2017, Hydraulic parameter generation technique using a discrete fracture network with bedrock heterogeneity in Korea, Water, 9, 937; doi:10.3390/w9120937.
  2. Dershowitz, W., 1984, Rock Jont Systems. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
  3. Dershowitz, W., Redus, K., Wallmann, P., La Pointe, P., and Axelsson, C. L., 1992, The implication of fractal dimension in hydrogeology and rock mechanics. Version 1.1. SKB TR 92-17, Svensk Karnbranslehantering AB.
  4. Dershowitz, W., Shuttle, D., Lee, G., Rogers, S., 2-7, Analysis of groundwater inflow control by grouting using the discrete fracture network method, Felsbau, 25, 34-41.
  5. Finnila, A., Dershowitz, W., Doe, T., and McLaren, R., 2015, Hydro-shearing and hydraulic fracturing for enhanced geothermal systems in archetypical normal, strike-slip and thrust faulting terrains, GRC Trans, 2015, 39, 19p.
  6. Fox, A., Forchhammer, K., Pettersson, A., La Pointe, P., and Lim, D.-H., 2012, Geological Discrete Fracture Network Model for the Olkiluoto Site, Eurajoki, Finland. Version 2.0; POSIVA 2012-27; POSIVA OY: Eurajoki, Finland.
  7. FracMan Technology Group, 2016, Interactive Discrete Feature Data Analysis, Geometric Modeling and Exploration Simulation, $FracMan^{(R)}$ 7 User Documentation; Golder Associates Inc.: Hongkong, China.
  8. Hartley, L., Hoek, J., Swan, D., Roberts, D., Joyce, S., and Follin, S., 2009, Development of a Hydrogeological Discrete Fracture Network Model for the Olkiluoto Site Descriptive Model 2008; Working Report 2009-61, POSIVA OY, Eurajoki, Finland.
  9. Ji, S. H., Park, K. W., Lim, D. -H., Kim, C, Kim, K.S., and Dershowitz, W., 2012, A hybrid modeling approach to evaluate the groundwater flow system at the low- and intermediatelevel radioactive waste disposal site in Gyeong-Ju, Korea, Hydrogeol. J., 20, 1341-1353. https://doi.org/10.1007/s10040-012-0875-x
  10. Lim, D. -H., 2002, Mass transport analysis in the near field of geologic repository, Ph.D. dissertation, Department of Nuclear Engineering, University of California, Berkeley.
  11. Lim, D. -H., 2016, Probabilistic transport path analysis through three-dimensional discrete fracture network for underground radioactive waste disposal facilities, In Proceedings of the 13th International Conference on Probabilistic Safety Assessment and Management, Seoul, Korea, p.2-7.
  12. McClure, M. W. and Horne, R. N., 2010, Discrete fracture modeling of hydraulic simulation in enhanced geothermal systems. In Proceedings of the 35th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, SGPTR-188.
  13. Munier, R., 2004, Statistical Analysis of Fracture Data, Adapted for Modelling Discrete Fracture Networks-Version 2; SKB R-04-66; Svensk Karnbranslehantering AB: Osthammar, Sweden.
  14. Park, S. G. and Kim, H. J., 1994, Applicability of resistivity image profiling to geologic survey in the Keoje-do area, Economic and Environmental Geology, 27, 563-569.
  15. Rogers, S., Lim, D. -H., Fejer, P., and Han, G, 2012, Static and dynamic data integration for improved characterisation of a fractured gas reservoir. In Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, Chicago, IL, USA, p.24-27.
  16. Shin, H. J., 2001, Hydrogeological Characterization of Fractured Crystalline Rock and It's Application to Discrete Fracture Network Model, Ph.D. Thesis, Yonsei University, Seoul, Korea, 2001.
  17. Will, R., Archer, R., and Dershowitz, W., 2005, Integration of seismic anisotropy and Reservoir-Performance data for characterization of naturally fractured reservoirs using Discrete-Feature-Network models, SPE Reserv. Eval. Eng. 8, 132-142. https://doi.org/10.2118/84412-PA

Cited by

  1. 시추공 주변 단열 투수도 진화에 대한 수리-역학 연동 모델링 평가 vol.31, pp.1, 2021, https://doi.org/10.9720/kseg.2021.1.055