DOI QR코드

DOI QR Code

Introduction of Denitrification Method for Nitrogen and Oxygen Stable Isotopes (δ15N-NO3 and δ18O-NO3) in Nitrate and Case Study for Tracing Nitrogen Source

탈질미생물을 이용한 질산성 질소의 산소 및 질소 동위원소 분석법 소개

  • Lim, Bo-La (Environmental Measurement & Analysis Center, NIER) ;
  • Kim, Min-Seob (Environmental Measurement & Analysis Center, NIER) ;
  • Yoon, Suk-Hee (Environmental Measurement & Analysis Center, NIER) ;
  • Park, Jaeseon (Environmental Measurement & Analysis Center, NIER) ;
  • Park, Hyunwoo (Environmental Measurement & Analysis Center, NIER) ;
  • Chung, Hyen-Mi (Fundamental Environment Research Department, NIER) ;
  • Choi, Jong-Woo (Environmental Measurement & Analysis Center, NIER)
  • 임보라 (국립환경과학원 환경측정분석센터) ;
  • 김민섭 (국립환경과학원 환경측정분석센터) ;
  • 윤숙희 (국립환경과학원 환경측정분석센터) ;
  • 박재선 (국립환경과학원 환경측정분석센터) ;
  • 박현우 (국립환경과학원 환경측정분석센터) ;
  • 정현미 (국립환경과학원 환경기반연구부) ;
  • 최종우 (국립환경과학원 환경측정분석센터)
  • Received : 2017.12.23
  • Accepted : 2017.12.31
  • Published : 2017.12.31

Abstract

Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of denitrification bacteria method (Pseudomonas chlororaphis ssp. Aureofaciens ($ATCC^{(R)}$ 13985)), three reference (IAEA-NO-3 (Potassium nitrate $KNO_3$), USGS34 (Potassium nitrate $KNO_3$), USGS35 (Sodium nitrate $KNO_3$)) were analyzed 5 times repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values of IAEA-NO-3, USGS 34 and USGS35 were ${\delta}^{15}N:4.7{\pm}0.1$${\delta}^{18}O:25.6{\pm}0.5$‰, ${\delta}^{15}N:-1.8{\pm}0.1$${\delta}^{18}O:-27.8{\pm}0.4$‰, and ${\delta}^{15}N:2.7{\pm}0.2$${\delta}^{18}O:57.5{\pm}0.7$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated isotope values of potential nitrogen source (soil, synthetic fertilizer and organic-animal manures) and temporal patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values in river samples during from May to December. ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values are enriched in December suggesting that organic-animal manures should be one of the main N sources in those areas. The current study clarifies the reliability of denitrification bacteria method and the usefulness of stable isotopic techniques to trace the anthropogenic nitrogen source in freshwater ecosystem.

본 연구는 박테리아 탈질법을 이용하여 질산성 질소의 질소 및 산소의 안정동위원소 분석법을 연구하였으며, 시료 농도, 미생물 배양시간에 따른 분석값의 변화에 대하여 고찰하였다. 탈질미생물법을 이용하여 시료 내 질산염 농도가 $0.1mg\;L^{-1}$까지 질산성 질소의 산소 및 질소 동위원소 분석이 가능하였고, 0.2‰까지 정확도를 확보하였다. 환경시료(지하수) 내 질산염의 기원을 추적하기 위하여 잠재적 질소 오염원(합성비료, 축산비료)의 동위원소비를 조사한 결과, 합성비료(${\delta}^{15}N-NO_3$ -5~10‰, ${\delta}^{18}O-NO_3$ 0~15‰)는 축산비료(${\delta}^{15}N-NO_3$ 10~23‰, ${\delta}^{18}O-NO_3$ 0~20‰)와 동위원소비가 현격한 차이를 보였다. 연구지역 지하수 동위원소비와 비교한 결과, 계절별로 서로 다른 질소 오염원의 영향을 받는 것으로 여겨진다. 과거 질산염의 안정동위원소를 분석하기 위해서 다양한 방법이 시도되었다. Revesz et al. (1997)은 양이온 교환 수지를 이용한 분리법을 보고하였으며, Silva et al. (2000)와 Fukada et al. (2003)은 음이온 교환 수지를 이용한 분리법을 보고하였고, McIlvin and Altabet (2005)는 카드뮴을 이용한 화학적 변환 방법을 보고하였다. 하지만 이러한 방법에 사용되는 시약은 독성이 강하고 복잡한 전처리 과정으로 인한 긴 전처리 시간을 소요함으로 인하여 분석비용이 비싸다는 단점이 있었다. 하지만 탈질미생물법은 소량의 질산염을 이용하기 때문에 기존 방법에 비해 분석에 사용되는 시료의 부피를 1/100까지 감소시켜 과거 분석이 어려웠던 빙하, 공극수, 해수 등에 대한 분석이 가능한 장점이 있다. 수생태계로 유입되는 다양한 질소 기원을 파악하기 위하여 탈질미생물법으로 분석된 안정동위원소비를 활용한다면 효율적인 수질 관리를 위한 해석기능을 제공할 것이다. 또한, 국내 최초로 지하수 환경시료에 적용함으로써 오염 기원 추적 기법을 확립하는 데 목적을 두고 있으며, 추후 정립된 분석기법을 토대로 환경분야에서 질산성 질소의 오염 인자 판별 연구에 널리 활용되기를 기대한다.

Keywords

References

  1. Bohlke, J.K., S.J. Mroczkoski and B.L. Weand. 1982. Process chemistry for water and wastewater treatment. Prentice Hall Inc, Englewood Cliff, New Jersey, 449.
  2. Bosley, K.L. and S.C. Wainright. 1999. Effects of preservatives andacidification on the stable isotope ratios ($^{15}N:\;^{14}N,\;^{13}C:\;^{12}C$) of two species of marine animals. Canidian Journal of Fisheries and Aquatic Science 56: 2181-2185. https://doi.org/10.1139/f99-153
  3. Brearley, F.Q., J.D. Scholes and S.S. Lee. 2005. Nitrogen nutritionand isotopic discrimination in tropical ectomycorrhizal fungi. Research in Microbiology 156: 184-190. https://doi.org/10.1016/j.resmic.2004.09.003
  4. Bottcher, J., O. Strebel, S. Voerkelius and H.L. Schmidt. 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification. Journal of Hydrology 114: 413-424. https://doi.org/10.1016/0022-1694(90)90068-9
  5. Burns, D.A. and C. Kendall. 2002. Analysis of ${\delta}^{15}N$ and ${\delta}^{18}O$ of nitrate to differentiate nitrate sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resource Research 38(5): 1051.
  6. Camargo, J.A. and A. Alonso. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystem: A global assessment. Environmental International 32: 831-849. https://doi.org/10.1016/j.envint.2006.05.002
  7. Carabel, S., P. Godinez-Dominguez, L. Versimo, L. Fernandez and J. Freire. 2006. An assessment of sample processing methods for stable isotope analyses of marine food webs. Journal of Experimental Marine Biology and Ecology 336: 254-261. https://doi.org/10.1016/j.jembe.2006.06.001
  8. Casciotti, K.L., D.M. Sigman, M. Galanter Hastings, J.K. Bohlke and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry 74: 4905. https://doi.org/10.1021/ac020113w
  9. Cey, E.E., D.L. Rudolphb, R. Aravenab and G. Parkinc. 1999. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. Journal of Contaminant Hydrology 37(1): 45-67. https://doi.org/10.1016/S0169-7722(98)00162-4
  10. Chae, G.T., S.T. Yun, B. Mayer, B.Y. Choi, K.H. Kim, J.S. Kwon and S.Y. Yu. 2009. Hydrochemical and stable isotopic assessment of nitrate contamination in an alluvial aquifer underneath a riverside agricultural field. Agricultural Water Management 96: 1819-1827. https://doi.org/10.1016/j.agwat.2009.08.001
  11. Choi, W.J., G.H. Han, H.M. Ro, S.H. Yoo and S.M. Lee. 2002. Evaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratios. Geosciences Journal 6: 47-55. https://doi.org/10.1007/BF02911335
  12. Choi, Y.J., J.W. Jung, W.J. Choi, K.S. Yoon, D.H. Choi, S.S. Lim, J.H. Jeong, B.J. Lim and N.M. Chang. 2011. Estimation of pollution sources of Oenam watershed in Juam lake using nitrogen concentration and isotope analysis. Journal of Korean Society on Water Quality 27: 467-474.
  13. Cole, M.L., K.D. Kroeger, J.W. Mcclelland and I. Valiela. 2006. Effects of watershed land use on nitrogen concentrations and ${\delta}^{15}N$ in groundwater. Biogeochemistry 77: 199-215. https://doi.org/10.1007/s10533-005-1036-2
  14. Costanzo, S.D., M.J. O’Donohue, W.C. Dennison, N.R. Loneragan and M. Thomas. 2001. A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin 42: 149-156. https://doi.org/10.1016/S0025-326X(00)00125-9
  15. Davis, S.N. and J.J. Suarez. 1974. Chemical character of return irrigation water in tropical volcanic islands. Environmental Geology 1: 69-73.
  16. Deutsch, B., M. Mewes, I. Liskow and M. Voss. 2006. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Organic Geochemistry 37: 1333-1342. https://doi.org/10.1016/j.orggeochem.2006.04.012
  17. French, C., L. Rock, K. Nolan, J. Tobin and A. Morrissey. 2012. The potential for a suit of isotope and chemical markers to differentiate sources of nitrate contamination: A review. Water Research 46: 2023-2041. https://doi.org/10.1016/j.watres.2012.01.044
  18. Fry, B. 1999. Using stable isotopes to monitor watershed influences on aquatic trophodynamics. Canadian Journal of Fisheries and Aquatic Science 56: 2167-2171. https://doi.org/10.1139/f99-152
  19. Hubner, H. 1986. Isotope effects of nitrogen in the soil and biosphere, Handbook of environmental isotope geochemistry, Vol. 2, pp. 361-425.
  20. Kaehler, S. and E.A. Pakhomov. 2001. Effects of storage andpreservation on the ${\delta}^{13}C$ and ${\delta}^{15}N$ signatures of selected marineorganisms. Marine Ecology Progress Series 219: 299-304. https://doi.org/10.3354/meps219299
  21. Kellman, L.M. and C. Hillaire-Marcel. 2003. Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture Ecosystem and Environment 95: 87-102. https://doi.org/10.1016/S0167-8809(02)00168-8
  22. Kendall, C. 1998. Tracing sources and cycling of nitrate in catchments, In: Kendall, C. and J.J. McDonnell (eds.), Isotope Tracers in Catchment Hydrology, pp. 519-576.
  23. Kim, I.S., K.S. Lee, Y.S. Bong, J.S. Ryu and K.J. Kim. 2012. Nitrogen and Oxygen analysis of nitrate using denitrification method. Journal of the Geological Society of Korea 48(4): 351-356.
  24. Kim, M.S., J.M, Kim, J.Y. Hwang, B.K. Kim, H.S. Cho, S.J. Youn, S.Y. Hong, O.S. Kwon and W.S. Lee. 2014. Determination of the Origin of Particulate Organic Matter at the Lake Paldang using Stable isotope ratios. Korean Journal of Environmental Ecology 47(2): 127-134. https://doi.org/10.11614/KSL.2014.47.2.127
  25. Kim, M.S., T.J. Park, S.H, Yoon, B.R. Lim, K.H. Shin, O.S. Kwon and W.S. Lee. 2015. Introduction of Kjeldahl Digestion method for nitrogen stable isotope analysis and case study for tracing nitrogen source. Korean Journal of Ecology and Environment 48(3): 147-152. https://doi.org/10.11614/KSL.2015.48.3.147
  26. Kohl, D.H., G.B. Shearer and B. Commoner. 1971. Fertilizer nitrogen: Contribution to nitrate in surface water in a corn belt watershed. Science 74: 1331-1334.
  27. Oren, O., Y. Yechieli, J.K. Bohlke and A. Doby. 2004. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley. Israel. Journal of Hydrology 290: 312-328. https://doi.org/10.1016/j.jhydrol.2003.12.016
  28. Payet, N., E. Nicolini, K. Rogers, H.S. Macary and M. Vauclin. 2010. Evidence of soil pollution by nitrates derived from pig effluent using $^{18}O$ and $^{15}N$ isotope analyses. Agronomy for Sustainable Development 30: 743-751. https://doi.org/10.1051/agro/2009056
  29. Lecea, A.M., A.J. Smit and S.T. Fennessy. 2011. The effects of freeze/thaw periods and drying methods on isotopic and elemental carbon and nitrogen in marine organisms, raising questions on sample preparation. Rapid Communication Mass Spectrometry 25: 3640-3649. https://doi.org/10.1002/rcm.5265
  30. Marconi, D., M.A. Weigand, P.A. Rafter, M.R. McIlvin, M. Forbes, K.L. Casciotti and D.M. Sigman. 2015. Nitrate isotope distributions on the US Geotraces North Atlantic crossbasin section: signals of polar nitrate sources and low latitude nitrogen cycling. Marine Chemistry 177: 143-156. https://doi.org/10.1016/j.marchem.2015.06.007
  31. McMahon, P.B. and J.K. Bohlke. 2006. Regional patterns in the isotopic composition of natural and anthropogenic nitrate in groundwater, High Plains, USA. Environmental Science and Technology 40(9): 2965-2970. https://doi.org/10.1021/es052229q
  32. Ministry of Envionment of Korea. 2012. http://www.law.go.kr/DRF/MDRFILawService.jsp?OC=me&ID=7134 (July 3, 2012)
  33. Min, J.H., S.T. Yun, K. Kim, H.S. Kim and D.J. Kim. 2003. Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers Korea. Hydrological Processes 30: 1197-1211.
  34. Ohte, N., S.D. Sebestyen, J.B. Shanley, D.H. Doctor, C. Kendall, S.D. Wankel and E.W. Boyer. 2004. Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique. Geophysical Research Letters 31: L21506.
  35. Oren, O., Y. Yechieli, J.K. Bohlke and A. Dody 2004. Contamination of groundwater under cultivated fields in an arid environment, Central Arava Valley, Israel. Journal of Hydrology 290(3/4): 312-328. https://doi.org/10.1016/j.jhydrol.2003.12.016
  36. Ostrom, N.E., L.O. Hedin, J.C. von Fisher and G.P. Robertson. 2002. Nitrogen transformations and $NO_3$ removal at a soil-stream interface: A stable isotope approach. Ecological Applications 12(4): 1027-1043. https://doi.org/10.1890/1051-0761(2002)012[1027:NTANRA]2.0.CO;2
  37. Rock, L. and B. Mayer. 2004. Isotopic assessment of sources of surface water nitrate within the Oldman River basin, Southern Alberta, Canada. Water, Air & Soil Pollution 4: 545-562. https://doi.org/10.1023/B:WAFO.0000028377.94365.09
  38. Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter and J.K. Bohlke. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry 73: 4145-4153. https://doi.org/10.1021/ac010088e
  39. Silva, S.R., P.B. Ging, R.W. Lee, J.C. Ebbert, A.J. Tesoriero and E.L. Inkpen. 2002. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments. Environmental Forensics 3: 125-130. https://doi.org/10.1006/enfo.2002.0086
  40. Smith, S.J., J.S. Schepers and L.K. Porter. 1990. Assessing and managing agricultural nitrogen losses to the environment. Advances in Soil Science 14: 1-43.
  41. Spalding, R.F., M.E. Exner, G.E. Martin and D.D. Snow. 1993. Effects of sludge disposal on groundwater nitrate concentrations. Journal Hydrology 142: 213-228. https://doi.org/10.1016/0022-1694(93)90011-W