DOI QR코드

DOI QR Code

금강 하구 생태계에서 아미노산의 질소 안정동위원소비를 이용한 섭식생물의 영양단계 파악

Determination of Trophic Position Using Nitrogen Isotope Ration of Individual Amino Acid in the Geum Estuary

  • 최현태 (한양대학교 해양융합공학과) ;
  • 최보형 (한양대학교 해양융합공학과) ;
  • 신경훈 (한양대학교 해양융합공학과)
  • Choi, Hyuntae (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Choi, Bohyung (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 투고 : 2017.11.10
  • 심사 : 2017.12.16
  • 발행 : 2017.12.31

초록

CSIA-AAs은 섭식 생물의 영양단계 산출 연구에서 SIA를 대체할 수 있는 연구 방법으로 크게 주목 받고 있지만, 최근까지 국내 연구 사례는 매우 부족하다. 본 연구에서는 금강 하구역에서 채집된 두 종의 다모류(Nephtyidae, Glyceridae)와 두 종의 어류 (Platycephalus indicus, Lophius litulon)에 대한 영양단계를 ${\delta}^{15}N_{AAs}$를 통해 산출하고 이를 ${\delta}^{15}N_{bulk}$를 이용해 산출한 영양단계와 비교하고자 하였다. 두 정점에서 채집된 다모류의 $TP_{bulk}$는 각각 2.6과 3.1로 다른 것으로 확인되었으며, 두 산출기법($TP_{base2}$, $TP_{base1}$)에 따른 차이는 작은 것으로 나타났다. 반면에, 본 연구에서 분석된 두 어종에 대한 $TP_{bulk}$는 각각 3.1과 2.3으로 어종 간 차이가 확인되었으나, $TP_{AAs}$는 3.8과 3.7로 어종 간 차이가 매우 작고 상대적으로 높은 영양단계가 확인되었다. 이는 두 어종이 어식성 어류임을 고려할 때 $TP_{AAs}$가 보다 더 신뢰할 수 있는 기법이라는 것을 확인할 수 있었으며, 본 연구는 한국 연안 생태계에서 CSIA-AAs의 활용 필요성과 그 유용성을 보여주고 있다.

Compound specific isotope analysis of amino acids (CSIA-AAs) is being highlighted as an alternative approach for overcoming some restrictions in application of stable isotope analysis of bulk tissue (SIA) for trophic position (TP) estimation. However, this approach has rarely been applied in Korea. The present study determines TP of two Polychaeta (Nephtyidae and Glyceridae) and two fish species(Platycephalus indicus and Lophius litulon) collected from the Geum River estuary using nitrogen isotope ratio of amino acid and compared with the TP values estimated by SIA. The Polychaeta species, sampled in two sites, showed similar TP between SIA(2.7 and 3.1) and CSIA-AAs (2.6 and 3.1). However, for both fish species, TP values displayed a large difference between SIA (3.1 and 2.3) and CSIA-AAs (3.8 and 3.7). In this study TP values estimated by CSIA-AAs showed more similar to the previously reported gut content analysis of both fishes compared with the results of SIA. Current study suggests the applicability of nitrogen isotope ratio of amino acid to understand coastal ecosystem structure and trophic ecology.

키워드

참고문헌

  1. Borga, K., K. Kidd, D. Muirm O. Berglund, J.M. Conder, F. Gobas, J. Kucklick, O. Malm and D.E. Powell. 2012. Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integrated Environmental Assessment and Management 8(1): 64-84. https://doi.org/10.1002/ieam.244
  2. Bowes, R.E. and J.H. Thorp. 2015. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6(1): 1-12. https://doi.org/10.1890/ES14-00174.1
  3. Cha, B.Y., B.Q. Hong, H.S. Jo, H.S. Sohn, Y.C. Park, W.S. Yang and O.I. Choi. 1997. Food habit of the yellow goosefish, Lophiuslitulon. Korean Journal of Fisheries and Aquatic Sciences 30(1): 95-104.
  4. Chikaraishi, Y., N.O. Ogawa, Y. Kashiyama, Y. Takano, H. Suga, A. Tomitani, H. Miyashita, H. Kitazato and N. Ohkouchi. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnology and Oceanography: Methods 7(11): 740-750. https://doi.org/10.4319/lom.2009.7.740
  5. Chikaraishi, Y., Y. Kashiyama, N.O. Ogawa, H. Kitazato and N. Ohkouchi. 2007. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Marine Ecology Progress Series 342: 85-90. https://doi.org/10.3354/meps342085
  6. Choi, B., S.Y. Ha., J.S. Lee., Y. Chikaraishi, N. Ohkouchi and K.H. Shin. 2017. Trophic interaction among organisms in a seagrass meadow ecosystem as revealed by bulk ${\delta}^{13}C$ and amino acid ${\delta}^{15}N$ analyses. Limnology and Oceanography 62(4): 1426-1435. https://doi.org/10.1002/lno.10508
  7. Coulter, G.W. 1991. Pelagic fish. p. 111-138. In: Lake Tanganyika and its life (Coulter, G.W., ed.). Oxford University Press.
  8. DeNiro, M.J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495-506. https://doi.org/10.1016/0016-7037(78)90199-0
  9. DeNiro, M.J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45(3): 341-351. https://doi.org/10.1016/0016-7037(81)90244-1
  10. Doi, H., K.H. Chang, T. Ando, I. Ninomiya, H. Imai and S.I. Nakano. 2009. Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos 118(1): 138-144. https://doi.org/10.1111/j.1600-0706.2008.17171.x
  11. Dubois, S., B. Jean-Louis, B. Bertrand and S. Lefebvre. 2007. Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. Journal of Experimental Marine Biology and Ecology 351(1): 121-128. https://doi.org/10.1016/j.jembe.2007.06.020
  12. Gal, J.K., M.S. Kim, Y.J. Lee, J. Seo and K.H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean Journal of Limnology 45: 242-251.
  13. Hannides, C.C., B.N. Popp, M.R. Landry and B.S. Graham. 2009. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnology and Oceanography 54(1): 50-61. https://doi.org/10.4319/lo.2009.54.1.0050
  14. Hong, Y.J., S.K. Jin and S.G. Hong. 2001. Identification of the sources of nitrate using stable isotope mass ratio in rural watersheds. Journal of the Korean Society of Agricultural Engineers 43: 120-128.
  15. Kang, C.K., E.J. Choy, H.S. Song, H.J. Park, I.S. Soe, Q. Jo and K.S. Lee. 2007. Isotopic determination of food sources of benthic invertebtates in two different macroalgal habitats in the Korean coasts. The Sea Journal of the Korean Society of Oceanography 12: 380-389.
  16. Kellman, L.M. and C. Hillaire-Marcel. 2003. Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture, Ecosystems & Environment 95(1): 87-102. https://doi.org/10.1016/S0167-8809(02)00168-8
  17. Kim, E., H. Kim, K.H. Shin, M.S. Kim, S.R. Kundu, B.G. Lee and S. Han. 2012. Biomagnification of mercury through the benthic food webs of a temperate estuary: Masan bay, Korea. Environmental Toxicology 31(6): 1254-1263. https://doi.org/10.1002/etc.1809
  18. Kim, M.S., J.M. Kim, J.Y. Hwang, B.K. Kim, H.S. Cho, S.J. Youn, S.Y. Hong, O.S. Kwon and W.S. Lee. 2014. Determination of the origin of particulate organic matter at the lake Paldang using stable isotope ratio (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 47(2): 127-134. https://doi.org/10.11614/KSL.2014.47.2.127
  19. Kwak, S.N. and S.H. Huh. 2002. Feeding habits of Platycephalusindicus in eelgrass (Zostera marina) beds in Kwangyang Bay. Korean Journal of Ichthyology 14(1): 29-35.
  20. Lorrain, A., B.S. Graham, B.N. Popp, V. Allain, R.J. Olson, B.P. Hunt, M. Potier, B. Fry, F. Galvan-Magana, C.E.R. Menkes and S. Kaehler. 2015. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Research Part II: Topical Studies in Oceanography 113: 188-198. https://doi.org/10.1016/j.dsr2.2014.02.003
  21. Macko, S.A., M.E. Uhle, M.H. Engel and V. Andrusevich. 1997. Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography/combustion/isotope ratio mass spectrometry. Analytical Chemistry 69(5): 926-929. https://doi.org/10.1021/ac960956l
  22. McCarthy, M.D., R. Benner, C. Lee and M.L. Fogel. 2007. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica et Cosmochimica Acta 71(19): 4727-4744. https://doi.org/10.1016/j.gca.2007.06.061
  23. McClelland, J.W. and I. Valiela. 1998. Liking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43(4): 577-585. https://doi.org/10.4319/lo.1998.43.4.0577
  24. McClelland, J.W., C.M. Holl and J.P. Montoya. 2003. Relating low ${\delta}^{15}N$ values of zooplankton to N 2-fixation in the tropical North Atlantic: insights provided by stable isotope ratios of amino acids. Deep Sea Research Part I: Oceanographic Research Papers 50(7): 849-861. https://doi.org/10.1016/S0967-0637(03)00073-6
  25. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of $^{15}N$ along food chains: further evidence and the relation between ${\delta}^{15}N$ and animal age. Geochimica et Cosmochimica Acta 48(5): 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  26. O’Reilly, C.M. and R.E. Hecky. 2002. Interpreting stable isotopes in food webs: Recognizing the role of time averaging at different trophic levels. Limnology and Oceanography 47(1): 306-309. https://doi.org/10.4319/lo.2002.47.1.0306
  27. Popp, B.N., B.S. Graham, R.J. Olson, C.C. Hannides, M.J. Lott, G.A. LopezIbarra, F. Galvan-Magana and B. Fry. 2007. Insight into the trophic ecology of yellowfin tuna, Thunnusalbacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. Terrestrial Ecology 1: 173-190.
  28. Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  29. Rolff, C. 2000. Seasonal variation in ${\delta}^{13}C$ and ${\delta}^{15}N$ of size-fractionated plankton at a coastal station in the northern Baltic proper. Marine Ecology Progress Series 203: 47-65. https://doi.org/10.3354/meps203047
  30. Schell, D.M., B.A. Barnett and K.A. Vinette. 1998. Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Marine Ecology Progress Series 162: 11-23. https://doi.org/10.3354/meps162011
  31. Sherwood, O.A., T.P. Guilderson, F.C. Batista, J.T. Schiff, M.D. McCarthy, 2014. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age. Nature 505(7481): 78-81. https://doi.org/10.1038/nature12784
  32. Vander Zanden, M. and J.B. Rasmussen. 1999. Primary consumer ${\delta}^{13}C$ and ${\delta}^{15}N$ and the trophic position of aquatic consumers. Ecology 80(4): 1395-1404. https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  33. Vander Zanden, M. and J.B. Rasmussen. 2001. Variation in ${\delta}^{15}N$ and ${\delta}^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46(8): 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061
  34. Vokhshoori, N.L. and M.D. McCarthy. 2014. Compound-specific ${\delta}^{15}N$ amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline ${\delta}^{15}N$ isoscapes for coastal ecosystems. PloS One 9(6): e98087. https://doi.org/10.1371/journal.pone.0098087
  35. Watanabe, S., M. Kodama and M. Fukuda. 2009. Nitrogen stable isotope ratio in the manila clam, Ruditapes philippinarum, reflects eutrophication levels in tidal flats. Marine Pollution Bulletin 58(10): 1447-1453. https://doi.org/10.1016/j.marpolbul.2009.06.018