References
- Narhi TO, Meurman JH, Ainamo A. Xerostomia and hyposalivation: causes, consequences and treatment in the elderly. Drugs Aging. 1999; 15: 103-16. https://doi.org/10.2165/00002512-199915020-00004
- Petersen OH. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992; 448: 1-51. https://doi.org/10.1113/jphysiol.1992.sp019028
- Park KP, Beck JS, Douglas IJ, Brown PD. Ca(2+)-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated from the rat lacrimal gland. J Membr Biol. 1994; 141: 193-201.
- Catalan MA, Pena-Munzenmayer G, Melvin JE. Ca2+-dependent K+ channels in exocrine salivary glands. Cell Calcium. 2014; 55: 362-8. https://doi.org/10.1016/j.ceca.2014.01.005
- Cho SM, Piao ZG, Kim YB, Kim JS, Park K. Characterization of intermediate conductance K+ channels in submandibular gland acinar cells. Korean J Physiol Pharmacol. 2002; 6: 305-9.
- Park K, Case RM, Brown PD. Identification and regulation of K+ and Cl- channels in human parotid acinar cells. Arch Oral Biol. 2001; 46: 801-10. https://doi.org/10.1016/S0003-9969(01)00047-4
- Park K, Majid A. Expression of volume-activated anion channels in exocrine acinar cells. J Korean Med Sci. 2000; 15 Suppl: S61-2. https://doi.org/10.3346/jkms.2000.15.S.S61
- Majid A, Brown PD, Best L, Park K. Expression of volume-sensitive Cl(-) channels and ClC-3 in acinar cells isolated from the rat lacrimal gland and submandibular salivary gland. J Physiol. 2001; 534: 409-21. https://doi.org/10.1111/j.1469-7793.2001.00409.x
- Park K, Brown PD. Intracellular pH modulates the activity of chloride channels in isolated lacrimal gland acinar cells. Am J Physiol. 1995; 268: C647-50. https://doi.org/10.1152/ajpcell.1995.268.3.C647
- Li J, Lee S, Choi SY, Lee SJ, Oh SB, Lee JH, Chung SC, Kim JS, Lee JH, Park K. Effects of pilocarpine on the secretory acinar cells in human submandibular glands. Life Sci. 2006; 79: 2441-7. https://doi.org/10.1016/j.lfs.2006.08.006
- Lee K, Choi S, Choi LM, Lee J, Kim JH, Chung G, Lee G, Choi SY, Park K. Desipramine inhibits salivary Ca(2+) signaling and aquaporin translocation. Oral Dis. 2015; 21: 530-5. https://doi.org/10.1111/odi.12317
- Park K, Lee S, Elliott AC, Kim JS, Lee JH. Swellinginduced Ca2+ release from intracellular calcium stores in rat submandibular gland acinar cells. J Membr Biol. 2002; 186: 165-76. https://doi.org/10.1007/s00232-001-0144-8
- Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005; 85: 201-79. https://doi.org/10.1152/physrev.00004.2004
- Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993; 361: 315-25. https://doi.org/10.1038/361315a0
- Clapham DE. Calcium signaling. Cell. 2007; 131: 1047-58. https://doi.org/10.1016/j.cell.2007.11.028
- Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000; 1: 11-21.
- Putney JW Jr. Capacitative calcium entry: sensing the calcium stores. J Cell Biol. 2005; 169: 381-2. https://doi.org/10.1083/jcb.200503161
- Collin T, Marty A, Llano I. Presynaptic calcium stores and synaptic transmission. Curr Opin Neurobiol. 2005; 15: 275-81. https://doi.org/10.1016/j.conb.2005.05.003
- Rose CR, Konnerth A. Stores not just for storage. intracellular calcium release and synaptic plasticity. Neuron. 2001; 31: 519-22. https://doi.org/10.1016/S0896-6273(01)00402-0
- Endo M. Calcium-induced calcium release in skeletal muscle. Physiol Rev. 2009; 89: 1153-76. https://doi.org/10.1152/physrev.00040.2008
- Tse FW, Tse A, Hille B, Horstmann H, Almers W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron. 1997; 18: 121-32. https://doi.org/10.1016/S0896-6273(01)80051-9
- Case RM, Clausen T. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol. 1973; 235: 75-102. https://doi.org/10.1113/jphysiol.1973.sp010379
- Eglen RM, Choppin A, Dillon MP, Hegde S. Muscarinic receptor ligands and their therapeutic potential. Curr Opin Chem Biol. 1999; 3: 426-32. https://doi.org/10.1016/S1367-5931(99)80063-5
- Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol. 2004; 66: 260-7. https://doi.org/10.1124/mol.66.2.260
- Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006; 148: 565-78. https://doi.org/10.1038/sj.bjp.0706780
- Kim N, Shin Y, Choi S, Namkoong E, Kim M, Lee J, Song Y, Park K. Effect of antimuscarinic autoantibodies in primary Sjogren's syndrome. J Dent Res. 2015; 94: 722-8. https://doi.org/10.1177/0022034515577813
- Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008; 455: 1210-5. https://doi.org/10.1038/nature07313
- Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol. 2005; 67: 445-69. https://doi.org/10.1146/annurev.physiol.67.041703.084745
- Shin YH, Kim JM, Park K. The effect of capsaicin on salivary gland dysfunction. Molecules. 2016; 21. doi: 10.3390/molecules21070835.
- Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJ, Kuo TH, Wuytack F, Racymaekers L, Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997; 272: 15765-70. https://doi.org/10.1074/jbc.272.25.15765
- Zhang X, Wen J, Bidasee KR, Besch HR Jr, Wojcikiewicz RJ, Lee B, Rubin RP. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem J. 1999; 340: 519-27. https://doi.org/10.1042/bj3400519
- Kim JM, Choi S, Park K. TRPM7 is involved in volume regulation in salivary glands. J Dent Res. 2017; 96: 1044-50. https://doi.org/10.1177/0022034517708766
- Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J. 2014; 28: 2238-48. https://doi.org/10.1096/fj.13-243436
- Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999; 77: 1528-39. https://doi.org/10.1016/S0006-3495(99)77000-1
- Parkash J, Asotra K. Calcium oscillations and waves in cells. Adv Exp Med Biol. 2012; 740: 521-9.
- Cheng H, Lederer WJ. Calcium sparks. Physiol Rev. 2008; 88: 1491-545. https://doi.org/10.1152/physrev.00030.2007
- Newman EA, Zahs KR. Calcium waves in retinal glial cells. Science. 1997; 275: 844-7. https://doi.org/10.1126/science.275.5301.844
- Dupont G, Combettes L, Bird GS, Putney JW. Calcium oscillations. Cold Spring Harb Perspect Biol. 2011; 3. doi: 10.1101/cshperspect.a004226.
- Endo M, Tanaka M, Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970; 228: 34-6. https://doi.org/10.1038/228034a0
- Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003; 4: 517-29.
- Uhlen P, Fritz N. Biochemistry of calcium oscillations. Biochem Biophys Res Commun. 2010; 396: 28-32. https://doi.org/10.1016/j.bbrc.2010.02.117
- Campbell K, Swann K. Ca2+ oscillations stimulate an ATP increase during fertilization of mouse eggs. Dev Biol. 2006; 298: 225-33. https://doi.org/10.1016/j.ydbio.2006.06.032
- Estrada M, Uhlen P, Ehrlich BE. Ca2+ oscillations induced by testosterone enhance neurite outgrowth. J Cell Sci. 2006; 119: 733-43. https://doi.org/10.1242/jcs.02775
- Hanley PJ, Musset B, Renigunta V, Limberg SH, Dalpke AH, Sus R, Heeg KM, Preisig-Muller R, Daut J. Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proc Natl Acad Sci U S A. 2004; 101: 9479-84. https://doi.org/10.1073/pnas.0400733101
- Berggren PO, Yang SN, Murakami M, Efanov AM, Uhles S, Kohler M, Moede T, Fernstrom A, Appelskog IB, Aspinwall CA, Zaitsev SV, Larsson O, de Vargas LM, Fecher-Trost C, Weissgerber P, Ludwig A, Leibiger B, Juntti-Berggren L, Barker CJ, Gromada J, Freichel M, Leibiger IB, Flockerzi V. Removal of Ca2+ channel beta3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Cell. 2004; 119: 273-84. https://doi.org/10.1016/j.cell.2004.09.033
- Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab. 2008; 8: 26-37. https://doi.org/10.1016/j.cmet.2008.06.003
- Gray PT. Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells. J Physiol. 1988; 406: 35-53. https://doi.org/10.1113/jphysiol.1988.sp017367
- Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, Kitaguchi T, Takahashi-Iwanaga H, Noda T, Aruga J, Mikoshiba K. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science. 2005; 309: 2232-4. https://doi.org/10.1126/science.1114110