DOI QR코드

DOI QR Code

Greenhouse gases emission from aerobic methanotrophic denitrification (AeOM-D) in sequencing batch reactor

  • Lee, Kwanhyoung (Department of Environmental Engineering, Korea University) ;
  • Choi, Oh Kyung (Program of Environmental Technology and Policy, Korea University) ;
  • Lee, Jae Woo (Department of Environmental Engineering, Korea University)
  • Received : 2016.06.26
  • Accepted : 2016.10.12
  • Published : 2017.03.25

Abstract

This study presents the effect of hydraulic retention time (HRT) on the characteristics of emission of three major greenhouse gases (GHGs) including $CH_4$, $CO_2$ and $N_2O$ during operation of a sequencing batch reactor for aerobic oxidation of methane with denitrification (AeOM-D SBR). Dissolved $N_2O$ concentration increased, leveled-off and slightly decreased as the HRT increased from 0.25 to 1d. Concentration of the dissolved $N_2O$ was higher at the shorter HRT, which was highly associated with the lowered C/N ratio. A longer HRT resulted in a higher C/N ratio with a sufficient carbon source produced by methanotrophs via methane oxidation, which provided a favorable condition for reducing $N_2O$ formation. With a less formation of the dissolved $N_2O$, $N_2O$ emission rate was lower at a longer HRT condition due to the lower C/N ratio. Opposite to the $N_2O$ emission, emission rates of $CH_4$ and $CO_2$ were higher at a longer HRT. Longer HRT resulted in the greater total GHGs emission as $CO_2$ equivalent which was doubled when the HRT increased from 0.5d to 1.0 d. Contribution of $CH_4$ onto the total GHGs emission was most dominant accounting for 98 - 99% compared to that of $N_2O$ (< 2%).

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. APHA (2005), Standard Methods for the Examination of Water and Wastewater, 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA.
  2. Bonin, P., Gilewicz, M. and Bertrand, J.C. (1992), "Effects of oxygen on Pseudomonas nautica growth on n-alkane with or without nitrate", Arch. Microbiol., 157, 538-545.
  3. Chan, A.S.K. and Parkin, T.B. (2000), "Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil", Soil Biol. Biochem., 32, 1581-1590. https://doi.org/10.1016/S0038-0717(00)00071-7
  4. Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F. and Stams, A.J.M. (2000), "Denitrification with methane as electron donor in oxygen-limited bioreactors", Appl. Microbiol. Biotechnol., 53, 754-762. https://doi.org/10.1007/s002530000337
  5. Cuba, R.M.F., Duarte, I.C.D., Saavedra, N.K., Varesche, M.B.A. and Foresti, E. (2011), "Denitrification coupled with methane anoxic oxidation and microbial community involved identification", Braz. Arch. Biol. Technol., 54(1), 173-182. https://doi.org/10.1590/S1516-89132011000100022
  6. Daelman, M.R.J., Van Eynde, T., van Loosdrecht, M.C.M. and Volcke, E.I.P. (2014), "Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs", Water Res., 66, 308-319. https://doi.org/10.1016/j.watres.2014.07.034
  7. Ding, Z.W., Ding, J., Fu, L., Zhang, F. and Zeng, R.J. (2014), "Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria", Appl. Microbiol. Biotechnol., 98, 10211-10221. https://doi.org/10.1007/s00253-014-5936-8
  8. Forman, D., Al-Dabbagh, S. and Doll, R. (1985), "Nitrates, nitrites and gastric cancer in Great Britain", Nature, 313(6004), 620-625. https://doi.org/10.1038/313620a0
  9. Frijns, J., Mulder, M. and Roorda, J. (2008), "Op weg naar een klimaatneutrale waterketen", $H_2O$, 10, 36-37.
  10. Her, J.J. and Huang, J.S. (1995), "Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough", Bioresource Technol., 54, 45-51. https://doi.org/10.1016/0960-8524(95)00113-1
  11. Holtan-Hartwig, L., Dosch, P. and Bakken, L.R. (2002), "Low temperature control of soil denitrifying communities: kinetics of $N_2O$ production and reduction", Soil Biol. Biochem., 34 (11), 1797-1806. https://doi.org/10.1016/S0038-0717(02)00169-4
  12. Houbron, E., Torrijos, M. and Capdeville, B. (1999), "An alternative use of biogas applied at the water denitrification", Wat. Sci. Tech., 40(8), 115-122. https://doi.org/10.1016/S0273-1223(99)00616-2
  13. Hu, Z., Lee, J.W., Chandran, K., Kim, S. and Khanal, S.K. (2013), "Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission", Bioresource Technol., 130, 314-320. https://doi.org/10.1016/j.biortech.2012.12.033
  14. Hu, Z., Lee, J.W., Chandran, K., Kim, S., Sharma, K. and Khanal, S.K. (2012), "Nitrous oxides ($N_2O$) emission from aquaculture: A review", Environ. Sci. Technol., 46(12), 6470-6480. https://doi.org/10.1021/es300110x
  15. Hu, Z., Zhang, J., Xie, H., Li, S., Wang, J. and Zhang, T. (2011), "Effect of anoxic/aerobic phase fraction on $N_2O$ emission in a sequencing batch reactor under low temperature", Bioresource Technol., 102, 5486-5491. https://doi.org/10.1016/j.biortech.2010.10.037
  16. IPCC (2006), Ch.6-Wastewater Treatment and Discharge. Prepared by the National Greenhouse Gas Inventories Programme, IPCC Guidelines for National Greenhouse Gas Inventories, Waste, Vol. 5, IGES, Japan.
  17. IPCC (2013), Summary for Policymakers. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York.
  18. Itokawa, H., Hanaki, K. and Matsuo, T. (2001), "Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition", Water Res., 35(3), 657-664. https://doi.org/10.1016/S0043-1354(00)00309-2
  19. Kampschreur,M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2009), "Nitrous oxide emission during wastewater treatment", Water Res., 43, 4093-4103. https://doi.org/10.1016/j.watres.2009.03.001
  20. Khin, T. and Annachhatre, A.P. (2004), "Nitrogen removal in a fluidized bed bioreactor by using mixed culture under oxygen-limited conditions", Water Sci. Technol., 50(6), 313-320/ https://doi.org/10.2166/wst.2004.0390
  21. Kim, J.K., Park, K.J., Cho, K.S., Nam, S.W., Park, T.J. and Bajpai, R. (2005), "Aerobic nitrificationdenitrification by heterotrophic Bacillus strains", Bioresource Technol., 96, 1897-1906. https://doi.org/10.1016/j.biortech.2005.01.040
  22. Kits, K.D., Klotz, M.G. and Stein, L.Y. (2015), "Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1", Environ. Microbiol., 17(9), 3219-3232. https://doi.org/10.1111/1462-2920.12772
  23. Knowles, R. (1982), "Denitrification", Microbiol. Rev., 46(1), 43-70.
  24. Lee, H.J., Bae, J.H. and Cho, K.M. (2001), "Simultaneous nitrification and denitrification in a mixed methanotrophic culture", Biotechnol. Lett., 23, 935-941 https://doi.org/10.1023/A:1010566616907
  25. Lee, J.W., Lee, K.H., Park, K.Y. and Maeng, S.K. (2010), "Hydrogenotrophic denitrification in a packed bed reactor: Effects of hydrogen-to-water flow rate ratio", Bioresource Technol., 101, 3940-3946. https://doi.org/10.1016/j.biortech.2010.01.022
  26. Lee, K, Choi, O.K., Song, J.H. and Lee, J.W. (2014), "Membrane diffuser coupled bioreactor for methanotrophic denitrification under non-aerated condition: Suggestion as a post-denitrification option", Environ. Eng. Res., 19(1), 75-81. https://doi.org/10.4491/eer.2014.19.1.075
  27. Mancinelli, R.L. (1995), "The regulation of methane oxidation in soil", Annu. Rev. Microbiol., 49, 581-605. https://doi.org/10.1146/annurev.mi.49.100195.003053
  28. Modin, O., Fukushi, K. and Yamamoto, K. (2007), "Denitrification with methane as external carbon source", Water Res., 41, 2726-2738. https://doi.org/10.1016/j.watres.2007.02.053
  29. Modin, O., Fukushi, K., Nakajima, F. and Yamamoto, K. (2010), "Aerobic methane oxidation coupled to denitrification: Kinetics and effect of oxygen supply", J. Environ. Eng. ASCE, 136(2), 211-219. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000134
  30. Noda, N., Kaneko, N., Mikami, M., Kimochi, Y., Tsuneda, S., Hirata, A., Mizuochi, M. and Inamori, Y. (2003), "Effects of SRT and DO on $N_2O$ reductase activity in an anoxic-oxic activated sludge system" Water Sci. Technol., 48, 363-370.
  31. Ono, Y., Somiya, I. and Oda, Y. (2000), "Identification of a carcinogenic heterocyclic amine in river water", Water Res., 34(3), 890-894. https://doi.org/10.1016/S0043-1354(99)00212-2
  32. Paudel, S.R., Choi, O., Khanal, S.K., Chandran, K., Kim, S. and Lee, J.W. (2015) "Effects of temperature on nitrous oxide ($N_2O$) emission from intensive aquaculture system" Sci. Total Environ., 518-519, 16-23. https://doi.org/10.1016/j.scitotenv.2015.02.076
  33. Petersen, S.O., Amon, B. and Gattinger, A. (2005), "Methane oxidation in slurry storage surface crusts", J. Environ. Qual., 34, 455-461.
  34. Sanchez, A., Rodriguez-Hernandez, L., Buntner, D., Esteban-Garcia, A.L., Tejero, I. and Garrido, J.M. (2016), "Denitrification coupled with methane oxidation in a membrane bioreactor after methanogenic pre-treatment of wastewater", J. Chem. Techno. Biotechnol., 91(12), 2950-2958. https://doi.org/10.1002/jctb.4913
  35. Shi, Y., Hu, S., Lou, J., Lu, P.m Keller, J. and Yuan, Z. (2013), "Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor", Environ. Sci. Technol., 47, 11577-11583. https://doi.org/10.1021/es402775z
  36. Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J. and Rey, A. (2003), "Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes", Eur. J. Soil Sci., 54, 779-791. https://doi.org/10.1046/j.1351-0754.2003.0567.x
  37. Sun, F.Y., Dong, W.Y., Shao, M.F., Lv, X.M., Li, J., Peng, L.Y. and Wang, H.J. (2013), "Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation", Bioresource Technol., 145, 2-9. https://doi.org/10.1016/j.biortech.2013.03.115
  38. Tallec, G., Garnier, J., Billen, G. and Gousailles, M. (2008), "Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation", Bioresource Technol., 99, 2200-2209. https://doi.org/10.1016/j.biortech.2007.05.025
  39. Thoern, M. and Soerensson, F. (1996), "Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal", Water Res., 30, 1543-1547. https://doi.org/10.1016/0043-1354(95)00327-4
  40. Waki, M., Suzuki, K., Osada, T. and Tanaka, Y. (2005), "Methane-dependent denitrification by a semipartitionedreactor supplied separately with methane and oxygen", Bioresour. Technol., 96, 921-927. https://doi.org/10.1016/j.biortech.2004.08.016
  41. Wrage, N., Velthof, G.L., van Beusichem, M.L. and Oenema, O. (2001), "Role of nitrifier denitrification in the production of nitrous oxide", Soil. Biol. Biochem., 33, 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  42. Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012), "Mechanisms of $N_2O$ production in biological wastewater treatment under nitrifying and denitrifying conditions", Water Res., 46(4), 1027-1037. https://doi.org/10.1016/j.watres.2011.11.080
  43. Zheng, H., Hanaki, K. and Matsuo, T. (1994), "Production of nitrous oxide gas during nitrification of wastewater", Water Sci. Technol., 30, 133-141.
  44. Zonoozi, M.H., Moghaddam, M.R.A. and Maknoon, R. (2014), "Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs", Membr. Water Treat., 5(4), 281-293. https://doi.org/10.12989/mwt.2014.5.4.281

Cited by

  1. Carbon dioxide and methane emission of denitrification bioreactor filling waste sawdust and industrial sludge for treatment of simulated agricultural surface runoff vol.289, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.112503