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MONOTONICITY PROPERTIES OF THE

GENERALIZED STRUVE FUNCTIONS

Rosihan M. Ali, Saiful R. Mondal, and Kottakkaran S. Nisar

Abstract. This paper introduces and studies a generalization of the
classical Struve function of order p given by

aSp,c(x) :=
∞
∑

k=0

(−c)k

Γ
(

ak + p + 3
2

)

Γ
(

k + 3
2

)

(x

2

)2k+p+1
.

Representation formulae are derived for aSp,c. Further the function aSp,c

is shown to be a solution of an (a+ 1)-order differential equation. Mono-
tonicity and log-convexity properties for the generalized Struve function

aSp,c are investigated, particulary for the case c = −1. As a consequence,
Turán-type inequalities are established. For a = 2 and c = −1, dominant
and subordinant functions are obtained for the Struve function 2Sp,−1.

1. Introduction

The Struve function of order p given by

(1.1) Hp(x) :=
∞
∑

k=0

(−1)k

Γ
(

k + p+ 3
2

)

Γ
(

k + 3
2

)

(x

2

)2k+p+1

is a particular solution of the non-homogeneous Bessel differential equation

x2y′′(x) + xy′(x) + (x2 − p2)y(x) =
4
(

x
2

)p+1

√
π Γ
(

p+ 1
2

) .(1.2)

Here Γ denote the gamma function. A solution of the non-homogeneous mod-
ified Bessel equation

x2y′′(x) + xy′(x) − (x2 + p2)y(x) =
4
(

x
2

)p+1

√
π Γ
(

p+ 1
2

)(1.3)
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yields the modified Struve function

(1.4) Lp(x) := −ie− ipπ

2 Hp(ix) =

∞
∑

k=0

1

Γ
(

k + p+ 3
2

)

Γ
(

k + 3
2

)

(x

2

)2k+p+1

.

The Struve functions occur in various areas of physics and applied mathemat-
ics, for example, in water-wave and surface-wave problems [2, 13], as well as
in problems on unsteady aerodynamics [23]. The Struve functions are also
important in particle quantum dynamical studies of spin decoherence [22] and
nanotubes [21].

The Struve function has gone through several generalizations and investi-
gations, notably in [8, 9, 10, 14, 16, 24, 25, 26, 27, 28]. Recently, Orhan and
Yagmur [20, 29] considered yet another generalization of the Struve function
defined on the complex plane, and obtained sufficient conditions for it to be
univalent, starlike, close-to-convex, and convex. Their generalization is given
by the power series

Wp,b,c(z) =
∞
∑

k=0

(−c)k
(

z
2

)2k+p+1

Γ
(

k + 3
2

)

Γ
(

k + p+ b+2
2

) , p, b, c ∈ C.

An association between this generalized Struve function and the Hardy space
of analytic functions was investigated in [30].

Galué in a recent paper [12] introduced a generalization of the Bessel function
of order p given by

aJp(x) :=

∞
∑

k=0

(−1)k

Γ(ak + p+ 1)k!

(x

2

)2k+p

, x ∈ R, a ∈ N = {1, 2, 3, . . .}.

Recurrence relations for aJp and several identities involving their derivatives
and integrals were derived. In [4], Baricz studied the Galué-type modified
Bessel function

aIp(x) :=

∞
∑

k=0

1

Γ(ak + p+ 1)k!

(x

2

)2k+p

, x ∈ R, a ∈ N,(1.5)

and obtained a Turàn-type inequality along with several other inequalities in-
volving aIp. It is evident that 1Jp := Jp and 1Ip := Ip, where Jp and Ip are
respectively the classical Bessel and modified Bessel functions.

In recent works, Baricz et al. [5, 6] studied monotonicity properties involving
the ratio between two modified Bessel functions, as well as the ratio between a
modified Bessel and a modified Struve function.

In the sequel, we define and give emphasis to the following generalization of
the Struve function. For a ∈ N and p, c, x ∈ R, let

aSp,c(x) :=

∞
∑

k=0

(−c)k
Γ
(

ak + p+ 3
2

)

Γ
(

k + 3
2

)

(x

2

)2k+p+1

.(1.6)
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Thus 1Sp,1(x) = Hp(x) and 1Sp,−1(x) = Lp(x), where Hp and Lp are given
respectively by (1.1) and (1.4). In this light, the function aSp,c is called the
Galué-type generalized Struve function of order p. It is also readily evident
that the power series (1.6) is absolutely convergent for finite x.

In this paper, it is first shown that the works of Galué as well as Baricz
et al. described earlier readily extend to the generalized Struve function aSp,c

given by (1.6). In Section 2, representation formulae and a recurrence relation
for aSp,c will be derived. The generalized Struve function of half-integer order
will also be obtained in terms of the generalized hypergeometric function. More
importantly, the function aSp,c is shown to be a solution of a certain differential
equation of order a+ 1, which reduces to (1.2) and (1.3) in the case a = 1 and
for particular values of c.

Section 3 is devoted to the investigation of monotonicity and log-convexity
properties involving the function aLp(x) := aSp,−1(x), as well as to the ratio
between these two of different order. As a consequence, Turán-type inequalities
are deduced. Dominant and subordinant functions for aSp,c are obtained for
a = 2 and c = 1 or c = −1.

Monotonicity property is also studied for the function ϕa : (0,∞) → R given
by

ϕa(x) :=
2a−1x1−a

aIp+a(x)

aLp(x)
,

where aIp+a is the Galué-type modified Bessel function given by (1.5). For a =
1, Baricz and Pogány in [6] showed that ϕ1 is decreasing for p ∈ (−3/2,−1/2].
We find the range over p for which ϕa is decreasing on (0,∞) for the cases
a = 2 and a = 3, and additionally pose a conjecture for the remaining values
of a.

2. Representations for the generalized Struve function

The Gauss multiplication theorem [1] for the gamma function states that

Γ(mz) = (2π)
1−m

2 mmz− 1
2

m
∏

j=1

Γ
(

z + j−1
m

)

, z 6= 0,− 1

m
, . . . ,(2.1)

m ∈ N. Thus

Γ(ak + l) = Γ
(

a
(

k + l
a

))

= (2π)
1−a
2 aak+l− 1

2

a
∏

j=1

Γ
(

k + l+j−1
a

)

= (2π)
1−a
2 aak+l− 1

2

a
∏

j=1

(

l+j−1
a

)

k
Γ
(

l+j−1
a

)

,(2.2)

l 6= −ak,−ak− 1,−ak − 2, . . ., and k ∈ N. Here (α)k denote the Pochhammer
symbol defined by (α)k = α(α+1)k−1 and (α)0 = 1. With z = l/a and m = a,
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it follows from (2.1) that

a
∏

j=1

Γ
(

l+j−1
a

)

=
Γ(l)

(2π)
1−a
2 al−

1
2

.

Together with (2.2), the latter identity gives

Γ(ak + l) = aak Γ(l)
a
∏

j=1

(

l+j−1
a

)

k
,

and thus

Γ
(

p+ 3
2 + ak

)

= aak Γ
(

p+ 3
2

)

a
∏

j=1

(

2p+2j+1
2a

)

k
, and

Γ
(

k + 3
2

)

=
√
π

2

(

3
2

)

k
.(2.3)

It is evident now from (1.6) and (2.3) that

aSp,c(x)

=
2xp+1

2p+1
√
π Γ
(

p+ 3
2

)

∞
∑

k=0

1
(

3
2

)

k

(

2p+3
2a

)

k

(

2p+5
2a

)

k
· · ·
(

2p+2a+1
2a

)

k

(

− cx
2

4aa

)k

,

which results in the following representation in terms of the generalized hyper-
geometric function (see [3]) given by

mFn(x) =

∞
∑

k=0

(a1)k(a2)k · · · (am)k
(b1)k(b2)k · · · (bn)kk!

xk.

Proposition 2.1. Let a ∈ N, and p, c, x ∈ R. Then

aSp,c(x) =
xp+1

2p
√
π Γ(p+ 3

2 )
1Fa+1

(

1; 3
2 ,

2p+3
2a , 2p+5

2a , . . . , 2p+2a+1
2a ;− cx2

4aa

)

.

Next we look at the representation formulae for the generalized Struve func-
tion aSp,c of half-integer order. For p = −1/2, it follows from (2.3) that

Γ
(

ak + p+ 3
2

)

= Γ(ak + 1) = aakk!

a−1
∏

j=1

(

j
a

)

k
and Γ

(

k + 3
2

)

=
√
π

2

(

3
2

)

k
.

Proposition 2.1 now shows that

aS
−

1
2 ,c

(x) =
√

2x
π 0Fa

(

; 32 ,
1
a
, 2
a
, . . . , a−1

a
;− cx2

4aa

)

.

Similarly for a ∈ N,

aS
a−

3
2 ,c

(x) =
2
(

x
2

)a−
1
2

√
πΓ(a)

0Fa

(

; 3
2 ,

a+1
a
, a+2

a
, . . . ,

a+(a−1)
a

;− cx2

4aa

)

.
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In the case a = 1, it follows from the formulae in [19, p. 291] that

1S−
1
2 ,1

(x) =
√

2x
π 0F1

(

; 3
2 ;−x2

4

)

=
√

2
πx

sin(x);

1S−
1
2 ,−1

(x) =
√

2x
π 0F1

(

; 3
2 ;

x2

4

)

=
√

2
πx

sinh(x).

If p = 1/2, Proposition 2.1 shows that

aS 1
2 ,c

(x) =

√

x3

2π 0Fa

(

; 3
2 ,

2
a
, 3
a
, . . . , a−1

a
, a+1

a
;− cx2

4aa

)

.

We next find an (a + 1)-order differential equation satisfied by aSp,c. Upon
differentiation, (1.6) gives

d

dx

(

x−p
aSp,c(x)

)

=

∞
∑

k=0

(−c)k
(

k + 1
2

)

22k+pΓ
(

3
2 + p+ ak

)

Γ
(

k + 3
2

)x2k

=
1

2pΓ
(

3
2 + p

)

Γ
(

1
2

) +
∞
∑

k=1

(−c)k
22k+pΓ

(

3
2 + p+ ak

)

Γ
(

k + 1
2

)x2k

=
1

2p
√
πΓ
(

3
2 + p

) +

∞
∑

k=0

(−c)k+1

22k+p+2Γ
(

3
2 + p+ a+ ak

)

Γ
(

k + 3
2

)x2k+2

=
1

2p
√
πΓ
(

3
2 + p

)

−cx1−a−p
(

1
2

)1−a
∞
∑

k=0

(−c)k
Γ
(

3
2 + p+ a+ ak

)

Γ
(

k + 3
2

)

(x

2

)2k+p+a+1

=
1

2p
√
πΓ
(

3
2 + p

) − cx1−a−p
(

1
2

)1−a
aSp+a,c(x).(2.4)

Expanding the left side of (2.4) yields

(2.5) xaS
′
p,c(x) =

xp+1

2p
√
πΓ
(

3
2 + p

) + paSp,c(x)− c
(x

2

)1−a

xaSp+a,c(x).

Yet another form for xaS
′
p,c is obtained from

d

dx

(

x
2p+1

a
−p−1

aSp,c(x)
)

=
∞
∑

k=0

(−c)k
22k+p+1Γ

(

3
2 + p+ ak

)

Γ
(

k + 3
2

)

d

dx
x2k+

2p+1
a

=
1

a

∞
∑

k=0

(−c)k(12 + p+ ak)

22k+pΓ
(

3
2 + p+ ak

)

Γ
(

k + 3
2

)x2k+
2p+1−a

a

=
1

a
x

2p+1−a

a
−p

aSp−1,c (x) .
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Expanding the left-hand side of the above relation, it follows that

xaS
′
p,c(x) =

x

a
aSp−1,c(x)−

(

2p+ 1

a
− p− 1

)

aSp,c(x).(2.6)

Thus (2.5) and (2.6) lead to the following recurrence relation.

Proposition 2.2. Let a ∈ N, and p, c, x ∈ R. Then

x

a
aSp−1,c(x) + c

(x

2

)1−a

xaSp+a,c(x) =
xp+1

2p
√
πΓ
(

3
2 + p

) +
(

2p+1
a

− 1
)

aSp,c(x).

Using the recurrence relations (2.5) and (2.6), the next result derives the
differential equation satisfied by aSp,c.

Theorem 2.1. Let a ∈ N, and the operator D be given by D := x(d/dx). For

each k = 1, . . . , a, the generalized Struve function aSp,c satisfies the differential

equation

(D − p)
k
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

aSp,c(x) +
cxk+2−a

ak21−a aSp−k+a,c(x)

=
2k+1

(

x
2

)p+1

ak
√
π Γ

(

p+ 3−2k
2

) .(2.7)

In particular, the generalized Struve function aSp,c is a solution of the differ-

ential equation

(2.8)

(D − p)

a
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

y(x) +
cx2

aa21−a
y(x) =

2a+1
(

x
2

)p+1

aa
√
π Γ

(

p+ 3−2a
2

) .

Proof. The proof is by induction. In terms of the differential operator D, the
identity (2.6) takes the form

(

D + 2p+1
a

− p− 1
)

aSp,c(x) =
x

a
aSp−1,c(x).(2.9)

Now the identity (2.5) gives

D(xaSp−1,c(x)) = x2aS
′
p−1,c(x) + xaSp−1,c(x)

=
xp+1

2p−1
√
πΓ
(

p+ 1
2

) + pxaSp−1,c(x) − c
(

x
2

)1−a
x2aSp−1+a,c(x)

=
xp+1

2p−1
√
πΓ
(

p+ 1
2

) + pa
(

D + 2p+1
a

− p− 1
)

aSp,c(x)

− c
(

x
2

)1−a
x2aSp−1+a,c(x).

Applying the operator D to both sides of (2.9), the latter equation leads to

D
(

D + 2p+1
a

− p− 1
)

aSp,c(x)
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=
1

a
D(xaSp−1,c(x))

=
xp+1

a2p−1
√
πΓ
(

p+ 1
2

) + p
(

D + 2p+1
a

− p− 1
)

aSp,c(x)

− c

a21−a
x3−a

aSp−1+a,c(x),

whence

(D − p)
(

D + 2p+1
a

− p− 1
)

aSp,c(x)

=
xp+1

a2p−1
√
πΓ
(

p+ 1
2

) − c

a21−a
x3−a

aSp−1+a,c(x).

This establishes (2.7) for k = 1.
Assuming (2.7) holds k = n, we will complete the inductive step by showing

it also holds for k = n+ 1. It follows from (2.6) that

D(xn−a+2
aSp−n+a,c(x))

= xn−a+3
aS

′
p−n+a,c(x) + (n− a+ 2)xn−a+2

aSp−n+a,c(x)

=
xn+3−a

a
aSp−n−1+a,c(x)−

(

2(p−n)+1
a

− p− 1
)

xn−a+2
aSp−n+a,c(x).

Applying the operator D to both sides of (2.7) for k = n, the above equation
shows that

D(D − p)

n
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

aSp,c(x)

=
(p+ 1)2n+1

(

x
2

)p+1

an
√
πΓ
(

p+ 3−2n
2

) − c

an+121−a
xn+3−a

aSp−n−1+a,c(x)

+
c

an21−a

(

2(p−n)+1
a

− p− 1
)

xn−a+2
aSp−n+a,c(x).

The induction formula allows us to rewrite the final term above in the form

D(D − p)

n
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

aSp,c(x)

=
(p+ 1)2n+1

(

x
2

)p+1

an
√
πΓ
(

p+ 3−2n
2

) − c

an+121−a
xn+3−a

aSp−n−1+a,c(x)

+

(

2(p− n) + 1

a
− p− 1

)

[

2n+1
(

x
2

)p+1

an
√
πΓ
(

p+ 3−2n
2

)

−(D − p)

n
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

aSp,c(x)



 .
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Thus
(

D + 2(p−n)+1
a

− p− 1
)

(D − p)

n
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

aSp,c(x)

=
2n+1

(

x
2

)p+1

an
√
πΓ
(

p+ 3−2n
2

)

2(p− n) + 1

a
− c

an+121−a
xn+3−a

aSp−n−1+a,c(x),

that is,

(D − p)

n+1
∏

j=1

(

D + 2p+3−2j
a

− p− 1
)

aSp,c(x) +
cxn+3−a

an+121−a aSp−n−1+a,c(x)

=
2n+2

(

x
2

)p+1

an+1
√
π Γ

(

p+ 3−2(n+1)
2

) . �

Remark 2.1. The differential equation (2.8) reduces respectively to (1.2) and
(1.3) for a = 1, c = 1 and a = 1, c = −1. For a = 2, (2.8) reduces to

4x3y′′′(x)+4(1−p)x2y′′(x)− (1− 4p)xy′(x)+ (2cx2− 3p)y(x) =
8
(

x
2

)p+1

√
πΓ
(

p− 1
2

) .

Thus its particular solution is 2Sp,c, which from Proposition 2.1 can be ex-
pressed in the form

2Sp,c(x) =

∞
∑

k=0

(−c)k
Γ
(

2k + p+ 3
2

)

Γ
(

k + 3
2

)

(x

2

)2k+p+1

=
xp+1

2p
√
π Γ(p+ 3

2 )
1F3

(

1; 3
2 ,

2p+3
4 , 2p+5

4 ;− cx2

16

)

.

We close this section by establishing integral representations for aSp,c for
c = 1 and c = −1. For a ∈ N, the identity (2.1) yields
(2.10)

Γ
(

ak + 3
2 + p

)

= Γ
(

a
(

k +
p+ 3

2

a

))

= (2π)
1−a
2 ap+ak+1

a
∏

j=1

Γ
(

k +
p+j+ 1

2

a

)

.

Now the beta function B(x, y) [1, 3] is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0

tx−1(1 − t)y−1dt(2.11)

for Rex > 0,Re y > 0. Replacing x by (k + 1) and y by ((2p+ 2j + 1)/2a− 1)
in (2.11) leads to

1

Γ
(

k +
p+j+ 1

2

a

) =
2

Γ(k + 1)Γ
(

2p+2j+1−2a
2a

)

∫ 1

0

t2k+1(1 − t2)
2p+2j+1−4a

2a dt,

(2.12)
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where Re p > (2a− 3)/2.
The Legendre duplication formula (see [1, 3])

(2.13) Γ(z)Γ
(

z + 1
2

)

= 21−2z
√
π Γ(2z)

shows that

Γ(k + 1) Γ
(

k + 3
2

)

= 2−2k−1
√
πΓ(2k + 2) =

√
π(2k + 1)!

22k+1
.

Thus from (2.10) and (2.12), the latter identity shows that the generalized
Struve function aHp := aSp,1 can be expressed as

aSp,1(x) =
∞
∑

k=0

(−1)k
(

x
2

)2k+p+1

(2k + 1)!

22k+1

√
π

2

(2π)
1−a
2 ap+ak+1

(2.14)

×
a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

∫ 1

0

t2k+1(1 − t2)
2p+2j+1−4a

2a dt

=
2
(

x
2

)p

√
π(2π)

1−a
2 ap+1− a

2

a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

×
∫ 1

0

∞
∑

k=0

(−1)k(xt)2k+1

(2k + 1)!(a
a
2 )2k+1

(1− t2)
2p+2j+1−4a

2a dt

=
2
(

x
2

)p

√
π(2π)

1−a
2 ap+1− a

2

a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

×
∫ 1

0

(1− t2)
2p+2j+1−4a

2a sin
(

xt

a
a
2

)

dt.

Substituting t = sinφ yields

aHp(x) = aSp,1(x)

=
2
(

x
2

)p

√
π(2π)

1−a
2 ap+1− a

2

a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

×
∫

π

2

0

(cosφ)
2p+2j+1−3a

a sin
(

x sin φ

a
a
2

)

dφ.

Similarly, the integral representation for the generalized modified Struve
function aLp := aSp,−1 takes the form

aLp(x) := aSp,−1(x)(2.15)

=
2
(

x
2

)p

√
π(2π)

1−a
2 ap+1− a

2

a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

×
∫ 1

0

(1 − t2)
2p+2j+1−4a

2a sinh

(

xt

a
a
2

)

dt



584 R. M. ALI, S. R. MONDAL, AND K. S. NISAR

=
2
(

x
2

)p

√
π(2π)

1−a
2 ap+1− a

2

a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

×
∫ π

2

0

(cosφ)
2p+2j+1−3a

a sinh

(

x sinφ

a
a
2

)

dφ.

3. Monotonicity properties of the generalized modified Struve

Recall that the generalized modified Struve function aLp of order p is

(3.1) aLp(x) := aSp,−1(x) =

∞
∑

k=0

1

Γ(ak + p+ 3
2 )Γ(k +

3
2 )

(x

2

)2k+p+1

.

For a ∈ N, consider the function ϕa : (0,∞) → R given by

ϕa(x) :=
2a−1x1−a

aIp+a(x)

aLp(x)
,(3.2)

where aIp+a is the Galué-type modified Bessel function given by (1.5). For
a = 1, Baricz and Pogány in [6] found that ϕ1 is increasing for p ≥ −1/2, and
decreasing for p ∈ (−3/2,−1/2]. We investigate the latter problem of finding
the range of p over which ϕa is decreasing on (0,∞). The following result of
Biernacki and Krzyż [7] will be required.

Lemma 3.1 ([7]). Consider the power series f(x) =
∑∞

k=0 akx
k and g(x) =

∑∞
k=0 bkx

k, where ak ∈ R and bk > 0 for all k. Further suppose that both series

converge on |x| < r. If the sequence {ak/bk}k≥0 is increasing (or decreasing),
then the function x 7→ f(x)/g(x) is also increasing (or decreasing) on (0, r).

The above lemma still holds when both f and g are even, or both are odd
functions. Here is the main result associated with a = 2 and a = 3.

Theorem 3.1. Let ϕa be given by (3.2).

(i) If a = 2 and p ∈ (−3/2, p2], where p2 ≈ 4.7081 is the positive root of

the equation 4p2 − 8p− 51 = 0, then ϕa is decreasing on (0,∞).
(ii) If a = 3 and p ∈ (−3/2, p3], where p3 ≈ 14.8115 is the positive root of

the equation 8p3 − 60p2 − 758p − 1605 = 0, then ϕa is decreasing on

(0,∞).

Proof. It follows from (1.5) that

2a−1x1−a
aIp+a(x) =

∞
∑

k=0

1

k!Γ(ak + p+ a+ 1)

(x

2

)2k+p+1

:=

∞
∑

k=0

αp,a,k

(x

2

)2k+p+1

,
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and from (1.6) that

aLp(x) =

∞
∑

k=0

1

Γ
(

k + 3
2

)

Γ
(

ak + p+ 3
2

)

(x

2

)2k+p+1

:=

∞
∑

k=0

βp,a,k

(x

2

)2k+p+1

.

Note that both series converge for all x.
The assertions above will be deduced from Lemma 3.1 by showing that

{αp,a,k/βp,a,k} is decreasing. The assumption p > −3/2 is necessary to ensure
that βp,a,k > 0 for all k. Let

rk =
αp,a,k

βp,a,k
=

Γ
(

k + 3
2

)

Γ
(

ak + p+ 3
2

)

k!Γ(ak + p+ a+ 1)
.

Then

rk+1

rk
=

Γ
(

k + 1 + 3
2

)

Γ
(

ak + a+ p+ 3
2

)

(k + 1)!Γ(ak + p+ 2a+ 1)
× k! Γ(ak + p+ a+ 1)

Γ
(

k + 3
2

)

Γ
(

ak + p+ 3
2

)

=
k + 3

2

k + 1

a
∏

j=1

ak + a+ p− j + 3
2

ak + p− j + 2a+ 1
.(3.3)

We next show that rk+1/rk < 1 for a = 2 and a = 3.

(i) Let a = 2. Then from (3.3), it follows that

rk+1

rk
=

(

k + 3
2

) (

2k + p+ 5
2

) (

2k + p+ 3
2

)

(k + 1)(2k + p+ 4)(2k + p+ 3)
.

Thus
(

k + 3
2

) (

2k + p+ 5
2

) (

2k + p+ 3
2

)

− (k + 1)(2k + p+ 4)(2k + p+ 3)

= − 4k2 + k
(

−p− 41
4

)

+ p2

2 − p− 51
8 ≤ 0,

provided 4p2 − 8p− 51 ≤ 0, which holds for p ∈ (−3/2, p2].
(ii) For a = 3, it follows from (3.3) that

rk+1

rk
=

(

k + 3
2

) (

3k + p+ 7
2

) (

3k + p+ 5
2

) (

3k + p+ 3
2

)

(k + 1)(3k + p+ 6)(3k + p+ 5)(3k + p+ 4)
.

Now rk+1 < rk if the expression

− 54k3 + k2
(

− 63p
2 − 405

2

)

+ k
(

−3p2 − 315p
4 − 249

)

+
p3

2
− 15p2

4
− 379p

8
− 1605

16
≤ 0,

which holds for all p ∈ (−3/2, p3), with p3 the positive root of the
equation 8p3 − 60p2 − 758p− 1605 = 0. �

The result of Baricz and Pogány in [6] for the case a = 1 and the results
obtained in the preceding theorem for the cases a = 2 and a = 3 support the
following conjecture.
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Conjecture 1. Let p > −3/2, a ∈ N be fixed, and the function ϕa be given by

(3.2). Then ϕa is decreasing on (0,∞) if p ≤ p0, where p0 is the smallest root

in (−3/2,∞) of

3
a
∏

j=1

(

a+ p− j + 3
2

)

= 2
a
∏

j=1

(2a+ p− j + 1).

We now turn to looking at monotonicity properties involving the modified
Struve function as well as the ratio between two modified Struve functions
of different order. On certain occasions, we shall also be interested in the
normalized function

aLp(x) =
(

2
x

)p
Γ
(

p+ 3
2

)

aLp(x)(3.4)

= Γ
(

p+ 3
2

)

∞
∑

k=0

1

Γ
(

k + 3
2

)

Γ
(

ak + p+ 3
2

)

(x

2

)2k+1

.

Theorem 3.2. Let a, b ∈ N.

(a) If q ≥ p > −3/2 and a ≤ b, then x 7→ 2p−qxq−p
aLp(x)/bLq(x) is

increasing on (0,∞).
(b) The function p 7→ aLp(x) given by (3.4) is decreasing and log-convex

on (−3/2,∞) for each fixed x > 0.
(c) The function p 7→ aLp+a(x)/aLp(x) is decreasing on (−3/2,∞) for each

fixed x > 0.
(d) The function x 7→ xaL

′
p(x)/aLp(x) is increasing on (0,∞) for each fixed

p > −3/2.
(e) The function

x 7→ a

a
∏

j=1

1

Γ
(

2p+2j+1
2a

) +
(x

2

)1−p−a √
π(2π)

1−a
2 ap+2

aLp+a(x)

is log-convex on (0,∞) for each fixed p > −3/2.

Proof. (a) From (1.6) it is evident that

xq−p
aLp(x)

2q−p
bLq(x)

=

∑∞
k=0 αk,p,a

(

x
2

)2k

∑∞
k=0 αk,q,b

(

x
2

)2k
,

where

αk,p,a =
1

Γ
(

k + 3
2

)

Γ
(

ak + p+ 3
2

) and αk,q,b =
1

Γ
(

k + 3
2

)

Γ
(

bk + q + 3
2

) .

Write wk = αk,p,a/αk,q,b; then

wk+1

wk

=
Γ
(

ak + p+ 3
2

)

Γ
(

bk + b+ q + 3
2

)

Γ
(

bk + q + 3
2

)

Γ
(

ak + a+ p+ 3
2

) =

(

bk + q + 3
2

)

b
(

ak + p+ 3
2

)

a

≥ 1

when b ≥ a and q ≥ p. The result now follows from Lemma 3.1.
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(b) Let a ∈ N, and q ≥ p > −3/2. Then (q + 3/2)ak ≥ (p + 3/2)ak for all
k ∈ {0, 1, 2, . . .}. Thus

γk,q,a := Γ

(

q +
3

2

)

αk,q,a =
1

Γ
(

k + 3
2

) (

q + 3
2

)

ak

≤ 1

Γ
(

k + 3
2

) (

p+ 3
2

)

ak

:= γk,p,a.

Since

aLq(x) =

∞
∑

k=0

Γ

(

q +
3

2

)

αk,q,a

(x

2

)2k+1

=

∞
∑

k=0

γk,q,a

(x

2

)2k+1

,

we deduce that

aLq(x) ≤ aLp(x)

for each fixed x > 0. Thus p 7→ aLp is decreasing for p > −3/2.
To show log-convexity of aLp, it is sufficient to show that γk,p,a is log-convex

for all k ∈ {0, 1, 2, 3, . . .}. The result will then follow from the fact that sums
of log-convex functions are also log-convex.

Denote the digamma function by Ψ(p) = Γ′(p)/Γ(p). Then evidently

∂2

∂p2
(log(γk,p,a)) = Ψ′

(

p+ 3
2

)

−Ψ′
(

ak + p+ 3
2

)

.

From [1, p. 260], Ψ′ has the explicit form

Ψ′(t) =
∞
∑

n=0

1

(t+ n)2
, t ∈ R \ {0,−1,−2, . . .}.

This implies that

∂2

∂p2
(log(γk,p,a)) =

∞
∑

n=0

ak(ak + 2p+ 3 + 2n)
(

p+ 3
2 + n

)2 (
ak + p+ 3

2 + n
)2 ≥ 0

for all k ∈ {0, 1, 2, . . .} and p > −3/2. Thus p 7→ γk,p,a is log-convex on
(−3/2,∞) for all a ∈ N, and consequently aLp is log-convex for each fixed
x > 0.

(c) Let q ≥ p > −3/2. From part (a), it follows that
(

2px−p
aLp(x)

2qx−q
aLq(x)

)′

≥ 0

when x > 0, and this is equivalent to the inequality
(

x−p
aLp(x)

)′ (
x−q

aLq(x)
)

−
(

x−p
aLp(x)

) (

x−q
aLq(x)

)′ ≥ 0.(3.5)

For c = −1, the identity (2.4) reduces to

(

x−p
aLp(x)

)′
=

1

2p
√
πΓ
(

3
2 + p

) + x1−a−p
(

1
2

)1−a
aLp+a(x).
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It now follows from (3.5) that

x−p−q
(x

2

)1−a

(aLp+a(x) aLq(x)− aLp(x) aLq+a(x))

≥ 2−qx−p
aLp(x)√

πΓ
(

3
2 + q

) − 2−px−q
aLq(x)√

πΓ
(

3
2 + p

)

=
2−p−q

√
πΓ
(

3
2 + p

)

Γ
(

3
2 + q

) (aLp(x) − aLq(x)).

In view of result (b), the final term above is non-negative, whence aLp+a/aLp
is decreasing for p > −3/2.

(d) Let βk,p,a := (2k + p + 1)αk,p,a. Then the quotient xaL
′
p/aLp can be

written as

xaL
′
p(x)

aLp(x)
=

∑∞
k=0 βk,p,a

(

x
2

)2k

∑∞
k=0 αk,p,a

(

x
2

)2k
.

Clearly, the sequence {βk,p,a/αk,p,a}k≥0 = {2k + p + 1}k≥0 is increasing, and
hence Lemma 3.1 shows that the function x 7→ xaL

′
p/aLp is increasing on (0,∞).

(e) From (2.15), the integral representation for aLp is

aLp(x) =
2
(

x
2

)p

√
π(2π)

1−a
2 ap+1− a

2

×
a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

)

∫ 1

0

(1− t2)
2p+2j+1−4a

2a sinh

(

xt

a
a
2

)

dt.

Integrating by parts yields
∫ 1

0

(1− t2)
2p+2j+1−4a

2a sinh

(

xt

a
a
2

)

dt

= − a
a
2

x
+
a

a
2 (2p+ 2j + 1− 4a)

ax

∫ 1

0

(1− t2)
2p+2j+1−6a

2a t cosh

(

xt

a
a
2

)

dt,

which implies

aLp(x) = −
(

x
2

)p−1

√
π(2π)

1−a
2 ap+1−a

a
∏

j=1

1

Γ
(

2p+2j+1−2a
2a

) +
(x/2)p−1

√
π(2π)

1−a
2 ap+2−a

×
a
∏

j=1

(2p+ 2j + 1− 4a)

Γ
(

2p+2j+1−2a
2a

)

∫ 1

0

(1− t2)
2p+2j+1−6a

2a t cosh

(

xt

a
a
2

)

dt.

Replacing p by p+ a, it follows that

a

a
∏

j=1

1

Γ
(

2p+2j+1
2a

) +
(x

2

)1−p−a √
π(2π)

1−a
2 ap+2

aLp+a
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=

a
∏

j=1

(2p+ 2j + 1− 2a)

Γ
(

2p+2j+1
2a

)

∫ 1

0

(1− t2)
2p+2j+1−4a

2a t cosh

(

xt

a
a
2

)

dt.

To prove the assertion, we next show that

(3.6)

∫ 1

0

(1 − t2)
2p+2j+1−4a

2a t cosh

(

xt

a
a
2

)

dt

is log-convex. It is known that hyperbolic functions are log-convex. Thus for
α ∈ [0, 1] and x, y > 0,
∫ 1

0

(1− t2)
2p+2j+1−4a

2a t cosh

(

(αx+ (1 − α)y)
t

a
a
2

)

dt

≤
∫ 1

0

(

(1− t2)
2p+2j+1−4a

2a t cosh

(

xt

a
a
2

))α(

(1− t2)
2p+2j+1−4a

2a t cosh

(

yt

a
a
2

))1−α

dt.

Applying the well-known Hölder-Rogers inequality for integrals yields
∫ 1

0

(1 − t2)
2p+2j+1−4a

2a t cosh

(

(αx + (1− α)y)
t

a
a
2

)

dt

≤
(∫ 1

0

(1− t2)
2p+2j+1−4a

2a t cosh

(

xt

a
a
2

)

dt

)α(∫ 1

0

(1 − t2)
2p+2j+1−4a

2a t cosh

(

yt

a
a
2

)

dt

)1−α

.

Thus the integral in (3.6) is log-convex, and consequently

x 7→ a

a
∏

j=1

1

Γ
(

2p+2j+1
2a

) +
(x

2

)1−p−a √
π(2π)

1−a
2 ap+2

aLp+a(x)

is also log-convex. �

The results in Theorem 3.2 are also proved in [6] for the case a = 1.

Remark 3.1. Theorem 3.2 has interesting consequences, among which is the
Turán-type inequality for the normalized Galué-type modified Struve function

aLp given by (3.4). From the definition of log-convexity, it follows from Theo-
rem 3.2(b) that

aLαp1+(1−α)p2
(x) ≤ (aLp1(x))

α
(aLp2(x))

1−α
,

where α ∈ [0, 1], p1, p2 > −3/2, and x > 0. Choosing α = 1/2, p1 = p− a and
p2 = p+ a, the above inequality yields

aL2
p(x) − aLp+a(x)aLp−a(x) ≤ 0,

which is equivalent to

Γ2
(

p+ 3
2

)

aL
2
p(x) − Γ

(

p+ a+ 3
2

)

Γ
(

p− a+ 3
2

)

aLp+a(x)aLp−a(x) ≤ 0.

This reduces to a Turán-type inequality for aLp:

aL
2
p(x) ≤

Γ(p+ a+ 3
2 )Γ(p− a+ 3

2 )
(

Γ(p+ 3
2 )
)2 aLp+a(x)aLp−a(x).
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We turn now to another function of interest given by

Ta,p(x) :=
(

2
x

)

aLp(x) =
(

2
x

)p+1
Γ
(

p+ 3
2

)

aLp(x)

= Γ
(

p+ 3
2

)

∞
∑

k=0

1

Γ
(

k + 3
2

)

Γ
(

ak + p+ 3
2

)

(x

2

)2k

.(3.7)

Monotonicity properties involving the ratio of Ta,p is given in the following
result, which lead to a Turán-type inequality for Ta,p.
Theorem 3.3. Let a ∈ N and p > −3/2.

(a) The function p 7→ Ta,p+1(x)/Ta,p(x) is increasing, that is, for q ≥ p >

−3/2, the inequality

Ta,q+1(x)Ta,p(x) ≥ Ta,q(x)Ta,p+1(x)(3.8)

holds for each fixed x ∈ R.

(b) If q ≥ p > −3/2, then the function

x 7→
(

q + 3
2

)

a
log(xTa,q(x)) −

(

p+ 3
2

)

a
log(xTa,p(x))

is increasing on (0,∞).

Proof. (a) Let γa,p be given by γa,p(x
2) = Ta,p(x). The first assertion is equiv-

alent to showing

γa,q+1(x)γa,p(x) ≥ γa,q(x)γa,p+1(x)(3.9)

for x ≥ 0. Write

γa,p(x) :=

∞
∑

n=0

bn(p)x
n =

∞
∑

n=0

(

1
4

)n
Γ
(

p+ 3
2

)

Γ
(

an+ p+ 3
2

)

Γ
(

n+ 3
2

)xn.

Thus (3.9) is equivalent to showing
(

∞
∑

n=0

bn(q + 1)xn

)(

∞
∑

n=0

bn(p)x
n

)

≥
(

∞
∑

n=0

bn(q)x
n

)(

∞
∑

n=0

bn(p+ 1)xn

)

,

which holds provided

bi(q + 1)bj(p) + bj(q + 1)bi(p) ≥ bj(q)bi(p+ 1) + bi(q)bj(p+ 1)(3.10)

for all i, j ∈ N.
Let

β1 = Γ(ai+ q + 5/2)Γ(aj + p+ 5/2) and

β2 = Γ(aj + q + 5/2)Γ(ai+ p+ 5/2).

Then

bi(q + 1)bj(p) + bj(q + 1)bi(p)(3.11)

=
(14 )

i+jΓ
(

p+ 3
2

)

Γ
(

q + 5
2

)

Γ
(

i+ 3
2

)

Γ
(

j + 3
2

)

[

aj + p+ 3
2

β1
+
ai+ q + 3

2

β2

]

.
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Similarly,

bj(q)bi(p+ 1) + bi(q)bj(p+ 1)(3.12)

=

(

1
4

)i+j
Γ
(

q + 3
2

)

Γ
(

p+ 5
2

)

Γ
(

i+ 3
2

)

Γ
(

j + 3
2

)

[

ai+ q + 3
2

β1
+
aj + p+ 3

2

β2

]

.

With i ≥ j, the relations (3.11) and (3.12) show that inequality (3.10) is
equivalent to

(

q + 3
2

) (

β2
(

aj + p+ 3
2

)

+ β1
(

ai+ p+ 3
2

))

≥
(

p+ 3
2

) (

β1
(

aj + q + 3
2

)

+ β2
(

ai+ q + 3
2

))

.

This can be further simplified to

β2aj
(

q + 3
2

)

+ β1ai ≥
(

p+ 3
2

)

β1aj + β2ai.

Since q ≥ p, the latter inequality holds true when (β1 − β2)(i− j) ≥ 0, that is,
provided β1 ≥ β2.

Now let

φi :=
Γ
(

ai+ q + 5
2

)

Γ
(

ai+ p+ 5
2

) =
Γ
(

q + 5
2

) (

q + 5
2

)

ai

Γ
(

p+ 5
2

) (

p+ 5
2

)

ai

.

Then

φi+1 − φi =
Γ
(

q + 5
2

)

Γ
(

p+ 5
2

)

((

q + 5
2

)

ai+a
(

p+ 5
2

)

ai+a

−
(

q + 5
2

)

ai
(

p+ 5
2

)

ai

)

=

(

q + 5
2

)

ai
Γ
(

q + 5
2

)

(

p+ 5
2

)

ai
Γ
(

p+ 5
2

)

(

(q + ai+ 5
2 )a

(p+ ai+ 5
2 )a

− 1

)

≥ 0,

that is, φi is increasing for i ∈ N. Thus φi ≥ φj for i ≥ j, and consequently
β1 ≥ β2. This validates inequality (3.9).

(b) We next show that for q ≥ p > −3/2, the function ψ : (0,∞) → R given
by

(3.13) ψ(x) :=
(

q + 3
2

)

a
log(xTa,q(x)) −

(

p+ 3
2

)

a
log(xTa,p(x))

is increasing on (0,∞). A computation yields

xTa,p ′(x) + Ta,p(x) =
x2

2
(

p+ 3
2

)

a

Ta,p+a(x) +
2√
π
.

Thus

ψ′(x) =
(

q + 3
2

)

a

(

xTa,q ′(x) + Ta,q(x)
xTa,q(x)

)

−
(

p+ 3
2

)

a

(

xTa,p ′(x) + Ta,p(x)
xTa,p(x)

)

=
x

2

(Ta,q+a(x)

Ta,q(x)
− Ta,p+a(x)

Ta,p(x)

)

+
2
(

q + 3
2

)

a

xTa,p(x)
√
π

(

Ta,p(x)
Ta,q(x)

− (p+ 3
2 )a

(

q + 3
2

)

a

)

.
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Since q ≥ p, it follows that (q + 3/2)a ≥ (p + 3/2)a. Further the inequality
(3.9) gives

Ta,q(x)
Ta,p(x)

≤ Ta,q+1(x)

Ta,p+1(x)
≤ Ta,q+2(x)

Ta,p+2(x)
≤ · · · ≤ Ta,q+a(x)

Ta,p+a(x)
.

Thus Ta,q+a(x)Ta,p(x) ≥ Ta,p+a(x)Ta,q(x).
From (3.7), write

Ta,p(x) =
∞
∑

n=0

αn(p)x
n :=

∞
∑

n=0

(

1
4

)n
Γ(p+ 3

2 )

Γ(an+ p+ 3
2 )Γ(n+ 3

2 )
x2n,

and let

H(x) =
Ta,p(x)
Ta,q(x)

− (p+ 3
2 )a

(

q + 3
2

)

a

.

A computation yields

αn(p)

αn(q)
=

(

q + 3
2

)

an
(

p+ 3
2

)

an

.

Since

αn+1(p)

αn+1(q)
− αn(p)

αn(q)
=

(

q + 3
2

)

an

(p+ 3
2 )an

(

(q + an+ 3
2 )a

(p+ an+ 3
2 )a

− 1

)

≥ 0

for q ≥ p, the sequence {αn(p)/αn(q)} is increasing. Lemma 3.1 shows that
Ta,p(x)/Ta,q(x) is increasing for x > 0. Evidently

Ta,p(x)
Ta,q(x)

→ 2/
√
π

2/
√
π

= 1

as x → 0, and thus H(x) > 0 for all x > 0. Consequently ψ′(x) > 0 for x > 0,
and ψ is increasing on (0,∞). This completes the proof. �

Remark 3.2. Inequality (3.8) leads to a generalization of the Turán-type in-
equality

T 2
a,p+1(x) ≤ Ta,p(x) Ta,p+2(x).

Example 3.1. This examples illustrates Theorem 3.3(a). The formulae from
[19, p. 291] show that

1L− 1
2
(x) =

√

2
πx

sinh(x) and 1L 1
2
(x) =

√

2
πx

(cosh(x) − 1).

With p = −1/2, the increasing property of the function p 7→ Ta,p+1(x)/Ta,p(x)
yields

T1,p+1(x)

T1,p(x)
≥

T1, 12 (x)
T1,− 1

2
(x)

=⇒ (2p+ 3)

x

1Lp+1(x)

1Lp(x)
≥ 2

x
(coth(x)− csch(x)).

Thus for p ≥ −1/2 and x ∈ (0,∞),

1Lp+1(x)

1Lp(x)
≥ 2

(2p+ 3)
(coth(x)− csch(x)).
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Now Theorem 3.2(c) shows that p 7→ 1Lp+1(x)/1Lp(x) is decreasing for each
fixed x > 0. Thus

1Lp+1(x)

1Lp(x)
≤ 1L 1

2
(x)

1L− 1
2
(x)

= coth(x)− csch(x),

and whence, the ratio of the modified generalized functions satisfies

2

(2p+ 3)
(coth(x) − csch(x)) ≤ 1Lp+1(x)

1Lp(x)
≤ coth(x) − csch(x)

for p ≥ −1/2 and x ∈ (0,∞).

Example 3.2. This second example illustrates Theorem 3.3(b). Choose a = 1,
p = −1/2, and q = 1/2. Then the function

ψ(x) = 2 log(xT1,1/2(x)) − log(xT1,−1/2(x))

is increasing on (0,∞). Let x0 ≈ 0.8841 be the non-negative root of
√
πx2 sinh(x) = 8(cosh(x) − 1)2.

Thus ψ(x0) = 0, and whence ψ(x) ≥ 0 in [x0,∞).
Consequently,

xT1,− 1
2
(x) ≤

(

xT1, 12 (x)
)2

,

that is,
√
2x1L− 1

2
(x) ≤ x2

(

2
3
2 x−

3
2 1L 1

2
(x)
)2

=⇒
√
2x

√

2

πx
sinh(x) ≤ 16x−1

πx
(cosh(x) − 1)2.

Thus √
πx2 sinh(x) ≤ 8(cosh(x)− 1)2, x ∈ [x0,∞).

In closing, we deal with the special case a = 2. In this case, 2Sp,c is

2Sp,c(x) :=

∞
∑

k=0

(−c)k
Γ
(

2k + p+ 3
2

)

Γ
(

k + 3
2

)

(x

2

)2k+p+1

.

The dominant and subordinant functions will be obtained for c = −1, that is,
for the function 2Lp := 2Sp,−1.

Theorem 3.4. If p ≥ −1/2 and x ≥ 0, then

(3.14) 2Lp(x) ≤
(x

2

)p+1
(

12p2 + 48p+ 29 + 16 cosh(x2 )

6
√
πΓ
(

p+ 7
2

)

)

.

Proof. Clearly (3.14) trivially holds for x = 0. Let x > 0 and define f :
(0,∞) → R by

f(x) :=

(

2

x

)p+1

2Lp(x)−
8 cosh(x2 )

3
√
πΓ
(

p+ 7
2

) .
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It follows from (3.1) and the hyperbolic cosine series that

f(x) =

∞
∑

k=0

(

1

Γ
(

2k + p+ 3
2

)

Γ
(

k + 3
2

) − 8

3
√
πΓ
(

p+ 7
2

)

Γ(2k + 1)

)

(x

2

)2k

.

Thus
(3.15)

f ′(x)=

∞
∑

k=1

(

1

Γ
(

2k + p+ 3
2

)

Γ
(

k + 3
2

) − 8

3
√
πΓ
(

p+ 7
2

)

Γ(2k + 1)

)

2k
(

x
2

)2k−1
.

We establish f ′(x) < 0 by showing each coefficient in the above series is nega-
tive.

Let ζ : [1,∞) → R be

(3.16) ζ(t) :=
Γ(2t+ 1)

Γ
(

t+ 3
2

)

Γ
(

2t+ p+ 3
2

) .

A logarithmic differentiation of (3.16) yields

ζ′(t)

ζ(t)
= 2Ψ(2t+ 1)−Ψ

(

t+ 3
2

)

− 2Ψ
(

2t+ p+ 3
2

)

,

where Ψ is the digamma function. It is known that Ψ is increasing and

Ψ(y) = −γ +
∞
∑

n=0

(

1

n+ 1
− 1

y + n

)

,

where γ ≈ 0.5772 is the Euler-Mascheroni constant. For t ≥ 1 and p ≥ −1/2,
it follows that Ψ(2t+ 1) ≤ Ψ(2t+ p+ 3/2) and

Ψ
(

t+ 3
2

)

≥ Ψ
(

5
2

)

=

(

3

5
− γ

)

+
∞
∑

n=1

3

(n+ 1)(2n+ 5)
> 0.

Hence ζ′(t) ≤ 0, and ζ(t) ≤ ζ(1). In particular,

1

Γ
(

2k + p+ 3
2

)

Γ
(

k + 3
2

) ≤ 8

3
√
πΓ
(

p+ 7
2

)

Γ(2k + 1)
,

which from (3.15) gives f ′(x) < 0 for all x > 0. The result is now deduced
from

f(x) ≤ f(0) =
1

Γ
(

p+ 3
2

)

Γ
(

3
2

) − 8

3
√
πΓ
(

p+ 7
2

) =
12p2 + 48p+ 29

6
√
πΓ
(

p+ 7
2

) .
�

Yet another dominant for 2Lp is given in the following result.

Theorem 3.5. If p ≥ −1/2 and x ≥ 0, then

2Lp(x) ≤
sinh(x)√
πΓ
(

p+ 3
2

)

(x

2

)p

.
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Proof. The Legendre duplication formula (2.13) yields

Γ(2k + 2) =
22k+1

√
π

Γ(k + 1)Γ
(

k + 3
2

)

.

Thus the hyperbolic sine series can be expressed in the form

(3.17) sinh(x) =

∞
∑

k=0

1

Γ(2k + 2)
x2k+1 =

∞
∑

k=0

√
π

Γ(k + 1)Γ
(

k + 3
2

)

(

x
2

)2k+1
.

The proof follows along similar lines as in Theorem 3.4. Here

ζ(t) :=
Γ(t+ 1)

Γ
(

2t+ p+ 3
2

) , t ≥ 1,

and

ζ′(t)

ζ(t)
< −Ψ(t+ 1) ≤ −Ψ(2) < 0.

We omit the remaining details. �

Neither dominant in Theorem 3.4 and the preceding theorem is smaller than
the other; they depend on the choice of the parameter p as well as the range x.

To establish the final result, we use the Chebyshev integral inequality [18, p.
40], which states the following: suppose f and g are two integrable functions
and monotonic in the same sense (either both decreasing or both increasing).
Let p : (a, b) → R be a positive integrable function. Then

(

∫ b

a

p(t)f(t)dt

)(

∫ b

a

p(t)g(t)dt

)

≤
(

∫ b

a

p(t)dt

)(

∫ b

a

p(t)f(t)g(t)dt

)

.

(3.18)

The inequality in (3.18) is reversed if f and g are monotonic but in the opposite
sense.

Theorem 3.6. Let x ∈ (0, 2π) and p > 0. Then

2Hp(x) ≥
πx
(

Γ
(

p

2

))2

4
√
2 Γ(2p−1

4 )Γ(2p+1
4 )

H
2
p−1
2

(

x
2

)

,

2Lp(x) ≥
πx
(

Γ
(

p

2

))2

4
√
2 Γ(2p−1

4 )Γ(2p+1
4 )

L
2
p−1
2

(

x
2

)

.(3.19)

Proof. From (2.14) with a = 2, the integral form for 2Hp := 2Sp,1 is

2Hp(x) =
xp

22p−
3
2Γ
(

2p−1
4

)

Γ
(

2p+1
4

)

(∫ 1

0

(1 − t2)
2p−5

4 sin
(

xt
2

)

dt

)

×
(∫ 1

0

(1− t2)
2p−3

4 sin
(

xt
2

)

dt

)

.(3.20)
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The integral form for 2Sp,−1 = 2Lp is obtained from (3.20) by replacing the sine
function with hyperbolic sine.

To establish the subordinant for 2Hp in (3.19), let

p(t) = (1− t2)
2p−3

4 sin
(

xt
2

)

, and f(t) = g(t) := (1 − t2)−
1
4 ; 0 < t < 1.

Then
∫ 1

0

p(t)f(t)dt =

∫ 1

0

p(t)g(t)dt =

∫ 1

0

(1− t2)
2p−4

4 sin
(

xt
2

)

dt.

It is known that for Re p > −1/2, the classical Struve function Hp has the
integral representation

Hp(y) =
21−pyp√
π Γ

(

p+ 1
2

)

∫ 1

0

(

1− t2
)p− 1

2 sin (yt) dt.

Replacing y by x/2 and p by (p− 1)/2, it follows that
(∫ 1

0

p(t)f(t)dt

)(∫ 1

0

p(t)g(t)dt

)

= 22p−4πx1−p
(

Γ
(

p

2

))2
H
2
p−1
2

(

x
2

)

.

Since f and g both are increasing on (0, 1), it is evident from (3.18) that

2Hp(x) =
xp

22p−
3
2Γ
(

2p−1
4

)

Γ
(

2p+1
4

)

×
(∫ 1

0

(1− t2)
2p−5

4 sin
(

xt
2

)

dt

)(∫ 1

0

(1− t2)
2p−3

4 sin
(

xt
2

)

dt

)

=
xp

22p−
3
2Γ
(

2p−1
4

)

Γ
(

2p+1
4

)

(∫ 1

0

p(t)f(t)g(t)dt

)(∫ 1

0

p(t)dt

)

≥ πx
(

Γ
(

p
2

))2

4
√
2Γ(2p−1

4 )Γ(2p+1
4 )

H
2
p−1
2

(

x
2

)

.

The subordinant for 2Lp in (3.19) is similarly established by choosing

p(t) = (1− t2)
2p−3

4 sinh
(

xt
2

)

, and f(t) = g(t) := (1 − t2)−
1
4 ; 0 < t < 1. �

Remark 3.3. Inequalities (3.19) can also be established using the generalized
Schwarz inequality (see [17]):

(

∫ b

a

g(t)(f(t))mdt

)(

∫ b

a

g(t)(f(t))ndt

)

≥
(

∫ b

a

g(t)(f(t))
m+n

2 dt

)2

,(3.21)

where f and g are two nonnegative functions, and m and n are real numbers
such that the integrals in (3.21) exist.

The subordinant (3.19) for 2Hp follows by choosing

g(t) = sin
(

xt
2

)

, f(t) = 1− t2, n =
2p− 5

4
and m =

2p− 3

4
, 0 < t < 1,
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while for 2Lp is obtained by letting

g(t) = sinh
(

xt
2

)

, f(t) = 1− t2, n =
2p− 5

4
and m =

2p− 3

4
, 0 < t < 1.
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