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SURFACE BUNDLES OVER SURFACES

WITH A FIXED SIGNATURE

Ju A Lee

Abstract. The signature of a surface bundle over a surface is known

to be divisible by 4. It is also known that the signature vanishes if the
fiber genus ≤ 2 or the base genus ≤ 1. In this article, we construct

new smooth 4-manifolds with signature 4 which are surface bundles over
surfaces with small fiber and base genera. From these we derive improved

upper bounds for the minimal genus of surfaces representing the second

homology classes of a mapping class group.

1. Introduction

By a surface bundle over a surface we mean an oriented fiber bundle whose
fibers and base are both compact, oriented 2-manifolds. When we study the
topology of fiber bundles, the fundamental question is how the topological in-
variants of the total space, the fiber space, and the base space are related. Even
though it is an elementary fact that the Euler characteristic is multiplicative for
fiber bundles, for the signature, the same does not hold in general. As the first
counterexamples, Atiyah [1] and, independently, Kodaira [18] provided surface
bundles over surfaces with nonvanishing signature. In these classical examples,
the fiber genus f or the base genus b was fairly big. For example, in Atiyah’s
example, f = 6 and b = 129. After that, there have been many efforts to find
out the smallest possible genera of surface bundle over surface for which the
signature is nonzero, see [4, 5, 6, 8, 31].

In the early constructions of surface bundles, the signature of the total space
was computed by using the signature formula for ramified coverings created by
Hirzebruch [15]. However, not all of the bundles can be constructed by using the
branched covering method. Instead, in general, the monodromy information of
a surface bundle allows us to compute its signature, with the help of Meyer’s
signature cocycle [26] which is a 2-cocycle of the symplectic group Sp(2g,R).
Using the signature cocycle and Birman-Hilden’s relations of mapping class
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group, Meyer proved that if the fiber genus f ≤ 2 or the base genus b ≤ 1, then
the signature vanishes. Hence, for a nonzero signature, we only need to consider
the case when f ≥ 3 and b ≥ 2. He also proved that for every f ≥ 3 and every
4n ∈ 4Z, there exists a Σf bundle over Σb with signature 4n for some b ≥ 0.
Based on his result, Endo [6] studied the following refined question which is
very similar to Problem 2.18A in Kirby’s problem list [17].

Problem 1.1. For each f ≥ 3 and each n ∈ Z, let b(f, n) be the minimal base
genus b over which a surface bundle with fiber genus f and signature 4n exists.
Determine the value b(f, n).

In [6], Endo showed that b(f, n) ≤ 111|n| for any f ≥ 3. In [31], Stipsicz
showed that b(f, 2f+2) ≤ 4f+20. In [8], Endo, Kotschick, Korkmaz, Ozbagci,
and Stipsicz proved that b(f, n) ≤ 8|n| + 1 for any f ≥ 3 and any n 6= 0. In
this paper, we improve this upper bound for b(f, n).

Theorem 1.2. (a) For every f ≥ 3 and n 6= 0, b(f, n) ≤ 7|n|+1. In particular,
there exists a smooth 4-manifold with signature 4 which is a Σ3-bundle over Σ8.

(b) For every f ≥ 5 and n 6= 0, b(f, n) ≤ 6|n|+ 1. In particular, there exists
a smooth 4-manifold with signature 4 which is a Σ5-bundle over Σ7.

(c) For every f ≥ 6 and n 6= 0, b(f, n) ≤ 5|n|+ 1. In particular, there exists
a smooth 4-manifold with signature 4 which is a Σ6-bundle over Σ6.

Our constructions of surface bundles rely on various computations in map-
ping class groups, which we will introduce in Section 3. From a geometric point
of view, these computations correspond to monodromy factorizations of Lef-
schetz fibrations. From Lefschetz fibrations, by taking neighborhoods of singu-
lar fibers out and gluing them along isomorphic boundaries via fiber-preserving
diffeomorphisms, we can construct surface bundles over surfaces. This method
was introduced in [8] to construct a Σ3 bundle over Σ9 with signature 4. A key
ingredient in this paper is that a clever use of different embeddings of relations
in mapping class groups gives rise to more economical, in the sense of small
genera, surface bundles with a fixed signature 4.

Remark 1.3 ([23]). We may think of b(f, n) as the minimal genus of the surfaces
representing the n times generator of H2(Mod(Σf );Z)/Tor for fixed f ≥ 3 and
n.

On the other hand, the lower bound for b(f, n) was also investigated.

Kotschick [23] proved b(f, n) ≥ 2|n|
f−1 + 1, and Hamenstadt [13] proved b(f, n) ≥

3|n|
f−1 + 1. Combining the latter with our result, we have 3 ≤ b(3, 1) ≤ 8,

2 ≤ b(5, 1) ≤ 7, and 2 ≤ b(6, 1) ≤ 6.

It is not hard to see that b(f,n)
n converges. Now we defineGf :=limn→∞

b(f,n)
n

and improve a priori the upper bound for Gf that appeared in [8].

Theorem 1.4. For every odd f ≥ 3, Gf ≤ 14
f−1 .
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Remark 1.5. As far as I know, this is the best known upper bound for f = 3
or every odd f of the form 3k + 1, 3k + 2. In fact, for some other f ’s, better
upper bounds are known: for even f ≥ 4, Gf ≤ 6

f−2 [4], and for f = 3k ≥ 6,

Gf ≤ 9
f−2 [5].

2. Preliminaries

2.1. Signature

Let M be a compact oriented topological manifold of dimension 4m. Since
M is oriented, it admits the fundamental class [M ] ∈ H4m(M,∂M).

Definition. The symmetric bilinear form QM : H2m(M,∂M)×H2m(M,∂M)
→ Z defined by QM (a, b) := 〈a ∪ b, [M ]〉 is called the intersection form of M .

Remark 2.1. In the smooth case, we can understand QM above as the alge-
braic intersection number of smoothly embedded oriented submanifolds in M
representing the Poincaré duals of a and b.

If a or b is a torsion element, then QM vanishes, and hence QM descends to
the cohomology modulo torsion.

Definition. The signature of M , denoted by σ(M), is defined to be the signa-
ture of the symmetric bilinear form QM on H2m(M,∂M)/Tor. If the dimension
of M is not divisible by 4, σ(M) is defined to be zero.

2.2. Mapping class group

Let Σrg be an oriented surface of genus g with r boundary components and let
Σg be a closed oriented surface of genus g. The mapping class group Mod(Σrg)
of Σrg is defined to be the group of isotopy classes of orientation preserving
self-homeomorphisms which are identity on each boundary component. Based
on the theorem of Dehn, we have a surjective homomorphism π : F (S) →
Mod(Σg), where F (S) is the free group generated by the generating set S
consisting of all the Dehn twists over all isotopy classes of simple closed curves
on Σg. Set R := Kerπ and call each word w in the generators S of Mod(Σg)
a relation of Mod(Σg) if w ∈ R. Now, let us review some famous relations of
mapping class groups.

Let a and b be two simple closed curves on Σg. If a and b are disjoint,
then the supports of the Dehn twists ta and tb can be chosen to be disjoint.
Hence, there exist commutativity relations tatbt

−1
a t−1

b for any disjoint simple
closed curves a and b. If a intersects b transversely at one point, then there
exists a braid relation tatbtat

−1
b t−1

a t−1
b . It can be derived from more general

fact that ftaf
−1 = tf(a) in Mod(Σg) for any simple closed curve a on Σg and

any orientation preserving homeomorphism f of Σg. For braid relations, we

will take the latter general form ftaf
−1t−1

f(a). Consider the planar surface Σ4
0

with boundary components a, b, c, and d. On the left hand side of Figure 1,
the boundary curves a, b, c, and d are in black and the interior curves x, y, and
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z are in different colors. One can easily check that tatbtctd = tztytx holds in

Mod(Σ4
0) by applying the Alexander method, and we call t−1

d t−1
c t−1

b t−1
a tztytx

the lantern relations for all embedded subsurfaces Σ4
0 ↪→ Σg. For the k-chain

relations and any other details for mapping class groups, refer to [11]. One
can also deduce the star relations t−1

δ3
t−1
δ2
t−1
δ1

(tα1
tα2

tα3
tβ)3 supported on any

embedded subsurfaces Σ3
1 ↪→ Σg. See Figure 4 as an example.

We say that two simple closed curves a and b on Σg are topologically equiv-
alent if there exists a homeomorphism of Σg sending a to b. Similarly, the
two collections {a1, . . . , an} and {b1, . . . , bn} of simple closed curves on Σg are
called topologically equivalent if there exists a homeomorphism of Σg sending
ai to bi simultaneously for all 1 ≤ i ≤ n. To simplify the notation in the rest
of this paper, we will use the notation ww2

1 for the conjugation w−1
2 w1w2.

2.3. Lefschetz fibrations and surface bundles

Definition. Let X be a compact oriented 4-manifold, and B a compact ori-
ented 2-manifold. A smooth surjective map f : X → B is called a Lefschetz
fibration if for each critical point p ∈ X there are local complex coordinates
(z1, z2) on X around p and z on B around f(p) compatible with the orientations
and such that f(z1, z2) = z2

1 + z2
2 .

It follows that f has only finitely many critical points, and we may assume
that f is injective on the critical set C = {p1, . . . , pk}. A fiber of f containing
a critical point is called a singular fiber, and the genus of f is defined to be
the genus of the regular fiber. Notice that if ν(f(C)) denotes an open tubular
neighborhood of the set of critical values f(C), then the restriction of f to
f−1(B − ν(f(C))) is a smooth surface bundle over B − ν(f(C)).

For a smooth surface bundle f : E → B with a fixed identification φ of
the fiber over the base point p of B with a standard genus g surface Σg, the
monodromy representation of f is defined to be an antihomomorphism χ :
π1(B, p) → Mod(Σg) defined as follows. For each loop l : [0, 1] → B, l∗(E) →
[0, 1] is trivial and hence there exists a parametrization Φ : [0, 1] × Σg →
f−1(l[0, 1])) with Φ|0×Σg = φ−1. Now define χ([l]) := [Φ|−1

0×Σg
◦ Φ|1×Σg ]. For

the genus g Lefschetz fibration f : X → B with a fixed identification of the fiber
with Σg, we define the monodromy representation of f to be the monodromy
representation of the surface bundle f : X − f−1(f(C))→ B − f(C).

A Lefschetz singular fiber can be described by its monodromy. By look-
ing at the local model of the Lefschetz critical point, one can see that the
singular fiber is obtained from the regular fiber by collapsing a simple closed
curve, called the vanishing cycle. One can also observe that the monodromy
along the loop going around one Lefschetz critical value is given by the right-
handed Dehn twist along the vanishing cycle. Hence, from the monodromy
representation χ of a Lefschetz fibration, after fixing the generating system
{a1, b1, . . . , ah, bh, l1, . . . , lk} of π1(B − f(C), p), we get the global monodromy∏h
i=1[χ(ai), χ(bi)]

∏k
j=1 tγj since we have χ(lj) = tγj for each j = 1, . . . , k;
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and when B is closed,
∏h
i=1[χ(ai), χ(bi)]

∏k
j=1 tγj = 1 in Mod(Σg), and this

is called the monodromy factorization of a Lefschetz fibration. Conversely, a

factorization
∏h
i=1[αi, βi]

∏k
j=1 tγj = 1 of identity in Mod(Σg) gives rise to a

genus g Lefschetz fibration over Σh. For this, first observe that a product∏h
i=1[αi, βi] of h commutators in Mod(Σg) gives a Σg bundle over Σ1

h. Also,

a product
∏k
j=1 tj of right-handed Dehn twists tj in Mod(Σg) gives a genus

g Lefshetz fibration over D2. By combining these two constructions, a word

w =
∏h
i=1[αi, βi]

∏k
j=1 tj ∈ Mod(Σg) gives the genus g Lefschetz fibration over

Σ1
h, and if w = 1 in Mod(Σg) we can close up to a Lefschetz fibration over Σh.
Two Lefschetz fibrations f1 : X1 → B1, f2 : X2 → B2 are called isomorphic

if there exist orientation preserving diffeomorphisms H : X1 → X2 and h :
B1 → B2 such that f2 ◦ H = h ◦ f1. The isomorphism class of a Lefschetz
fibration is determined by an equivalence class of its monodromy representation.
Oriented genus g surface bundles over surfaces of genus h are classified, up to
isomorphism, by homotopy classes of the classifying map Σh → BDiff+Σg since

the structure group is Diff+Σg. If g ≥ 2, then according to the Earle-Eells
theorem and the K(π, 1) theory, they are classified by the conjugacy classes of

the induced homomorphisms π1(Σh)→ Mod(Σg). Therefore,
∏h
i=1[αi, βi] = 1

in Mod(Σg), up to global conjugations, determines the genus g surface bundle
over a surface of genus h.

3. Subtraction of Lefschetz fibrations

In the study of manifold theory, a common way to construct a new manifold
from a given manifold is a cut-and-paste operation. To construct a new 4-
manifold which is a surface bundle over a surface, H. Endo, M. Korkmaz,
D. Kotschick, B. Ozbagci and A. Stipsicz introduced an operation, called the
“subtraction of Lefschetz fibrations”, in [8]. Let us first explain it here in a
generalized version.

Let f : X → B1 be a Lefschetz fibration with m critical values q
(1)
1 , . . . , q

(1)
m

and let g : Y → B2 be another Lefschetz fibration with k ≤ m critical val-

ues q
(2)
1 , . . . , q

(2)
k . Suppose that f : f−1(D1) → D1 and g : g−1(D2) →

D2 are isomorphic where D1 ⊂ B1 is a disk containing some critical values

q
(1)
1 , . . . , q

(1)
k and D2 ⊂ B2 is a disk containing q

(2)
1 , . . . , q

(2)
k . Then, the man-

ifolds X\f−1(D1) and Y \g−1(D2) have a diffeomorphic boundary, and after
reversing the orientation of one of them, this diffeomorphism can be chosen to
be fiber-preserving and orientation-reversing. Fix such a diffeomorphism φ and
then glue Y \g−1(D2), the manifold Y \g−1(D2) with the reversed orientation,
to X\f−1(D1) using this diffeomorphism φ. Note that the resulting manifold,
denoted by X − Y , inherits a natural orientation and admits a smooth fibra-
tion f ∪ g : X\f−1(D1) ∪ Y \g−1(D2)→ B1#B2. This is a Lefschetz fibration
with m − k singular fibers. In particular, for k = m, we get a surface bundle
over a surface. In general, after repeatedly subtracting Lefschetz fibrations,
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we get X − Y1 − Y2 − · · · − Yn, a surface bundle over a surface, under the
following assumptions. Let f : X → B0 be a Lefschetz fibration with m criti-

cal values {q(0)
1,1, . . . , q

(0)
1,k1

, q
(0)
2,1, . . . , q

(0)
2,k2

, . . . , q
(0)
n,1, . . . , q

(0)
n,kn
} and g1 : Y1 → B1,

. . ., gn : Yn → Bn be Lefschetz fibrations with critical values {q(1)
1 , . . . , q

(1)
k1
},

· · · , {q(n)
1 , . . . , q

(n)
kn
}, respectively. We assume that k1 + · · ·+ kn = m and that

f : f−1(D0,i) → D0,i is isomorphic to gi : g−1
i (Di) → Di for each 1 ≤ i ≤ n,

where each D0,i ⊂ B0 is a disk containing q
(0)
1 , . . . q

(0)
ki

and Di ⊂ Bi is a disk

containing q
(i)
1 , . . . , q

(i)
ki

.
In order to use the subtraction method explained above, we need to construct

the building blocks X and Yi’s. First, we describe various gluing pieces Yi.

Proposition 3.1 ([8]). Let f ≥ 3 and let a be a simple closed curve on Σf .
In the mapping class group Mod(Σf ),

(a) t2a can be written as a product of two commutators,
(b) if a is nonseparating, then t4a can be written as a product of three com-

mutators.

Remark 3.2. This proposition gives us two genus f ≥ 3 Lefschetz fibrations
Y1 → Σ2 and Y2 → Σ3 whose monodromy factorizations are given by [f1, g1][f2,
g2]t2a = 1 and [f3, g3][f4, g4][f5, g5]t4a = 1 for some mapping classes fi, gi ∈
Mod(Σf ) for 1 ≤ i ≤ 5. Generally, for every n, we can obtain a Lefschetz
fibration which has n singular fibers and the monodromy tna using a daisy
relation.

b

c

ad
a2 a3

xy

d1 d2

z

c2 c1

a2

c1

c2 d1
d2

b

a3

Figure 1. Supports of four lantern relations and an embed-
ding of Σ7

0 into a genus 5 surface

The following two propositions allow us to glue building blocks along more
complicated monodromies in the sense that they are products of Dehn twists
along distinct simple closed curves.

Proposition 3.3. Let f ≥ 5 and let b,c be disjoint simple closed curves on Σf
such that Σf − b− c is connected. In Mod(Σf ), t2bt

2
c can be written as a product

of three commutators.
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Proof. We may assume b and c are embedded, as shown in Figure 1, because
any pair of simple closed curves whose complement in Σf is connected is topo-
logically equivalent. On the planar surface Σ7

0 in Figure 1, the following four
lantern relations hold. L1 := t−1

a t−1
b t−1

c t−1
d tytxtz , L2 := tdtD2tD1t

−1
d1
t−1
d2
t−1
c t−1

y ,

L3 := t−1
x t−1

a2 t
−1
a3 t
−1
c tatA3tA2 , L4 := t−1

z t−1
c1 t
−1
c2 t
−1
b tctC2tC1 . Here, D1 is an inte-

rior curve surrounding two boundary curves except d1, and all other curves
denoted by capital letters are defined similarly. After embedding Σ7

0 into

Σf with f ≥ 5, as shown in Figure 1, we have 1 = L1 · L
tytxtz
2 · Ltz3 · L4 =

t−1
b t−1

c tD2t
−1
d2
tD1t

−1
d1
t−1
c tA3t

−1
a3 tA2t

−1
a2 t−1

b tC2t
−1
c2 tC1t

−1
c1 in Mod(Σf ). Since both

Σf−D2−d2 and Σf−D1−d1 are connected, {d2, D2} and {D1, d1} are topolog-

ically equivalent and then tD2
t−1
d2
tD1

t−1
d1

= [tD2
t−1
d2
, φ1] for some φ1 ∈ Mod(Σf ).

Similarly, tA3t
−1
a3 tA2t

−1
a2 = [tA3t

−1
a3 , φ2] and tC2t

−1
c2 tC1t

−1
c1 = [tC2t

−1
c2 , φ3] for some

φ2, φ3 ∈ Mod(Σf ).

Therefore, t2bt
2
c = [tD2

t−1
d2
, φ1](tbtc)

−1

[tA3
t−1
a3 , φ2]t

−1
b [tC2

t−1
c2 , φ3]. �

β

γ

β

γ

δ′2

δ′1

δ′

δ2

δ1

δ3

Figure 2. Supports of two lantern relations embedded in a
genus 6 surface

Proposition 3.4. Let f ≥ 6 and let β,γ be simple closed curves on Σf em-
bedded, as shown in Figure 2. In Mod(Σf ), tβtγ can be written as a product of
three commutators.

Proof. Choose two lantern relations with their supports on Σf , as shown in

Figure 2: L1 := t−1
γ t−1

δ1
t−1
δ2
t−1
δ3
tytxtz and L2 := tx′tz′ty′t

−1
δ′ t
−1
δ′1
t−1
δ′2
t−1
β . For in-

terior curves, see Figure 3. It follows that 1 = L1 · L2 = t−1
γ t−1

δ2
tyt
−1
δ3
txtzt

−1
δ1
·

tx′t
−1
δ′2
tz′t
−1
δ′ ty′t

−1
δ′1
t−1
β . In Figure 2 and Figure 3, we can see that δ1 and x′

are separating curves on Σf and that both Σf − z − δ1 and Σf − δ′2 − x′ are

homeomorphic to Σ1
1∪Σ3

f−2. Hence, we have tzt
−1
δ1
tx′t
−1
δ′2

= [tzt
−1
δ1
, φ2] for some
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β

δ′2

δ′1

δ′
x′

β

δ′2

δ′1

δ′

y′

β

δ′2

δ′1

δ′
z′

γ

δ2

δ1

δ3

x

γ

δ2

δ1

δ3

y

γ

δ2

δ1

δ3

z

Figure 3. Interior curves for two lantern relations

φ2. Similarly, we have t−1
δ2
tyt
−1
δ3
tx = [t−1

δ2
ty, φ1] and tz′t

−1
δ′ ty′t

−1
δ′1

= [tz′t
−1
δ′ , φ3]

for some φ1 and φ3.

Therefore, tβtγ = [t−1
δ2
ty, φ1]t

−1
β [tzt

−1
δ1
, φ2]t

−1
β [tz′t

−1
δ′ , φ3]t

−1
β . �

In Proposition 11 of [8], they constructed a genus f ≥ 3 Lefschetz fibration
over a torus with 10 singular fibers using a two-holed torus relation which is
also called a 3-chain relation. In the following three Propositions, we generalize
this construction of a Lefschetz fibration.

β

δ1

δ2

δ3
α1

α2

α3 . . .

f − 3
︸︷︷︸

Figure 4. Support of a star relation

Proposition 3.5. Let f ≥ 3 and let {α1, α2} be any pair of nonseparating
simple closed curves on Σf such that Σf − α1 − α2 is connected. Then there
exists a genus f Lefschetz fibration X over Σ3 which has six singular fibers,
four of which have monodromy tα1

and two of which have monodromy tα2
.
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δ2

δ3
α1

α3

σ2

γ2

α3

α2

δ1

δ2σ1

γ1

. . .

f − 3
︸︷︷︸ . . .

f − 3
︸︷︷︸

Figure 5. Supports of two lantern relations

Proof. We use the star relation E := t−1
δ3
t−1
δ2
t−1
δ1

(tα1
tα2

tα3
tβ)3 supported on

Σ3
1 ↪→ Σf (Figure 4). Also, consider the following lantern relations whose sup-

ports are given in Figure 5 : L1 := t−1
α3
t−1
α2
t−1
δ1
t−1
δ2
tσ1tα1tγ1 , L2 := t−1

α3
t−1
α1
t−1
δ2
t−1
δ3

tσ2
tα2

tγ2 . Let W0 := tβ(tα1
tα2

tα3
tβ)2, W1 := tβtα1

tα2
tα3

tβ , and W2 := tβ .
Then, by using commutativity relations and braid relations,

1 = E · (W−1
0 L1W0) · (W−1

1 L1W1) · (W−1
2 L2W2)

= t−1
δ3
t−1
δ2
t−1
δ1
tα1

t−1
δ1
t−1
δ2
tσ1
tα1

tγ1tβtα1
t−1
δ1
t−1
δ2
tσ1
tα1

tγ1tβtα2
t−1
δ2
t−1
δ3
tσ2
tα2

tγ2tβ

= tα1
t−1
δ1
tσ1
t−1
δ2
tα1

tγ1t
−1
δ1
tβtα1

t−1
δ1
tσ1
t−1
δ2
tα1

tγ1t
−1
δ2
tβtα2

t−1
δ2
tσ2
t−1
δ3
tα2

tγ2t
−1
δ3
tβ

= t2α1
{t−1
δ1
tt−1
α1

(σ1)t
−1
δ2
tγ1t
−1
δ1
tβ}t2α1

{t−1
δ1
tt−1
α1

(σ1)t
−1
δ2
tγ1t
−1
δ2
tβ}

t2α2
{t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
tγ2t
−1
δ3
tβ}

= t2α1
[t−1
δ1
tt−1
α1

(σ1)t
−1
δ2
, φ1]t2α1

[t−1
δ1
tt−1
α1

(σ1)t
−1
δ2
, φ2]t2α2

[t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
, φ3].

For the last equality, we need to verify that there exists a self-homeomor-
phism φ1 of Σf sending δ1, t−1

α1
(σ1), and δ2 to β, δ1, and γ1, respectively. First,

it is easy to check that σ1 = t−1
β t−1

α2
tα1t

−1
α3

(β). Hence, the self-homeomorphism

tα3
t−1
α1
tα2

tβtα1
sends δ1, t−1

α1
(σ1), and δ2 to δ1, β, and δ2, respectively. Also,

there exists a homeomorphism sending δ1, β, and δ2 to β, δ1, and γ1, re-
spectively, because both Σf − δ1 − β − δ2 and Σf − β − δ1 − γ1 are home-
omorphic to Σ6

f−3. The composition of these two homeomorphisms is the
required φ1. The existence of φ2 and φ3 can be proven in a similar way
because σ2 = t−1

β t−1
α1
t−1
α3
tα2

(β). Finally, we get the required Lefschetz fi-
bration over Σ3 with fiber Σf whose monodromy factorization is given by

[t−1
δ1
tt−1
α1

(σ1)t
−1
δ2
, φ1]t

−2
α1 [t−1

δ1
tt−1
α1

(σ1)t
−1
δ2
, φ2]t

−4
α1 [t−1

δ2
tt−1
α2

(σ2)t
−1
δ3
, φ3]t

−2
α2
t−4
α1 t4α1

t2α2
= 1.

�

Proposition 3.6. Let f ≥ 4 and let {α2, α3} be any pair of nonseparating
simple closed curves on Σf such that Σf −α2−α3 is connected. Then there is
a genus f Lefschetz fibration Z over Σ4 which has four singular fibers, two of
which have monodromy tα2

and another two of which have monodromy tα3
.
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δ1

δ2 δ3

δ4
α1

α2

α3

α4

β

. . .

f − 4
︸︷︷︸

Figure 6. Support of a four-holed torus relation embedded
in a genus 4 surface

δ2 δ3

α1 α3

γ2

σ2
δ3

δ4

α2

α4

γ3

σ3

Figure 7. Supports of two lantern relations

Proof. We use the 4-holed torus relation [21] and lantern relations. Let E2 :=
t−1
δ4
t−1
δ3
t−1
δ2
t−1
δ1
tα1

tα3
tβtα2

tα4
tβtα1

tα3
tβtα2

tα4
tβ . We embed the support of this

relation into Σf , as shown in Figure 6. Let L5 := t−1
α3
t−1
α1
t−1
δ2
t−1
δ3
tσ2
tα2

tγ2
and L6 := t−1

α4
t−1
α2
t−1
δ3
t−1
δ4
tσ3
tα3

tγ3 . For the supports of lanterns, see Figure
7. Let w1 := tβtα2

tα4
tβtα1

tα3
tβtα2

tα4
tβ , w2 := tβtα1

tα3
tβtα2

tα4
tβ , and w3 :=

tβtα2tα4tβ . Then, from commutativity relations and braid relations,

1 = E2 · Lw1
5 · L

w2
6 · L

w3
5 · L

tβ
6

= t−1
δ4
t−1
δ3
t−1
δ2
t−1
δ1

(t−1
δ2
t−1
δ3
tσ2
tα2

tγ2tβ)(t−1
δ3
t−1
δ4
tσ3
tα3

tγ3tβ)

(t−1
δ2
t−1
δ3
tσ2tα2tγ2tβ)(t−1

δ3
t−1
δ4
tσ3tα3tγ3tβ)

= (t−1
δ2
tσ2t

−1
δ3
tα2tγ2t

−1
δ1
tβ)(t−1

δ3
tσ3t

−1
δ4
tα3tγ3t

−1
δ4
tβ)

(t−1
δ2
tσ2
t−1
δ3
tα2

tγ2t
−1
δ2
tβ)(t−1

δ3
tσ3
t−1
δ4
tα3

tγ3t
−1
δ3
tβ)

= tα2
(t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
tγ2t
−1
δ1
tβ)tα3

(t−1
δ3
tt−1
α3

(σ3)t
−1
δ4
tγ3t
−1
δ4
tβ)

tα2
(t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
tγ2t
−1
δ2
tβ)tα3

(t−1
δ3
tt−1
α3

(σ3)t
−1
δ4
tγ3t
−1
δ3
tβ)

= tα2 [t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
, φ1]tα3 [t−1

δ3
tt−1
α3

(σ3)t
−1
δ4
, φ2]

tα2
[t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
, φ3]tα3

[t−1
δ3
tt−1
α3

(σ3)t
−1
δ4
, φ4]

= [t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
, φ1]t

−1
α2 [t−1

δ3
tt−1
α3

(σ3)t
−1
δ4
, φ2]t

−1
α3
t−1
α2
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[t−1
δ2
tt−1
α2

(σ2)t
−1
δ3
, φ3]t

−1
α3
t−2
α2 [t−1

δ3
tt−1
α3

(σ3)t
−1
δ4
, φ4]t

−2
α3
t−2
α2 t2α2

t2α3
.

For the fifth equality, we need to find certain φ1, φ2, φ3 and φ4. For φ1, it is suf-
ficient to verify that {δ2, t−1

α2
(σ2), δ3} is topologically equivalent to {β, δ1, γ2}.

This is because {δ2, t−1
α2

(σ2), δ3} is topologically equivalent to {δ2, β, δ3}, and
then {δ2, β, δ3} to {β, δ1, γ2}. The arguments for φ2, φ3, and φ4 are simi-
lar. For these, we can check that {δ3, t−1

α3
(σ3), δ4} is topologically equivalent

to {β, δ4, γ3}, {δ2, t−1
α2

(σ2), δ3} is topologically equivalent to {β, δ2, γ2}, and

{δ3, t−1
α3

(σ3), δ4} is topologically equivalent to {β, δ3, γ3}. �

Proposition 3.7. Let f ≥ 6 and let β, γ be simple closed curves on Σf
embedded, as shown in Figure 2. Then there is a genus f Lefschetz fibration
W over Σ3 which has two singular fibers, one of which has monodromy tβ and
another has monodromy tγ .

Proof. There is a 9-holed torus relation E7 := t−1
δ1
t−1
δ2
· · · t−1

δ8
t−1
γ9 tβ8tσ3tσ6tα10tβ5

tσ4tσ7tα6tβ2tσ5tσ8tα3 (see its support in orange in Figure 8 and see Figure 9 for
its interior curves), where we use the identification (α1, α2, α3, α4, α5, α6, α7, α8,
α9) → (α5, α6, α7, α8, α10, α1, α2, α3, α4) to go from Figure 9 in [21] to Figure
9 in this article. Here, each βi = tαi(β) as in [21]. If we combine this re-
lation E7 and one more lantern relation L8 := t−1

δ9
t−1
δ10
tγ9tσ9

tα9
t−1
α8
t−1
α10

(see

its support in blue in Figure 8), then we get the following 10-holed torus rela-
tion E8 := t−1

δ1
t−1
δ2
· · · t−1

δ10
t−1
α8
t−1
α10
tβ8tσ3tσ6tα10tβ5tσ4tσ7tα6tβ2tσ5tσ8tα3tσ9tα9 . Let

β′5 = (tσ4
tσ7
tα6

tσ5
tσ8
tα3

tσ9
tα9

)−1(β5) and β′2 = (tσ5
tσ8
tα3

tσ9
tα9

)−1(β2). Then,
by using commutativity relations and braid relations,

1 = t−1
δ1
t−1
δ2
· · · t−1

δ10
tβ8tσ3tσ6tα10tσ4tσ7tα6tσ5tσ8tα3tσ9tα9tβ′5t

−1
α8
ttα8 (β′2)t

−1
α10

= t−1
δ1
t−1
δ2
· · · t−1

δ10
tβ8
tσ3
tσ4
tσ5
tσ6
tσ7
tσ8
tα10

tα6
tα3

tα9
tt−1
α9

(σ9)tβ′5t
−1
α8
ttα8

(β′2)t
−1
α10

= t−1
δ1
t−1
δ2
· · · t−1

δ10
(tσ3

tσ4
tσ5
tσ6
tσ7
tσ8
tα10

tα6
tα3

tα9
)t
−1
β8

tβ8tt−1
α9

(σ9)tβ′5t
−1
α8
ttα8

(β′2)t
−1
α10

= {t−1
δ1
· ttβ8 (σ3) · t−1

δ3
· ttβ8 (σ4) · t−1

δ10
· ttβ8 (σ5) · t−1

δ2
· ttβ8 (σ6) · t−1

δ7
· ttβ8 (σ7)

· t−1
δ9
· ttβ8 (σ8)}{t−1

δ5
· ttβ8 (α3) · t−1

δ8
· ttβ8 (α10) · t−1

δ6
· ttβ8 (α6) · t−1

δ4
· ttβ8 (α9)}

{tβ8 · tt−1
α9

(σ9)}{tβ′5 · t
−1
α8
· ttα8

(β′2) · t−1
α10
}

= [t−1
δ1
· ttβ8 (σ3) · t−1

δ3
· ttβ8 (σ4) · t−1

δ10
· ttβ8 (σ5), φ1]

[t−1
δ5
· ttβ8 (α3) · t−1

δ8
· ttβ8 (α10), φ2] · tβ8 · tt−1

α9
(σ9) · [tβ′5t

−1
α8
, φ3].

For the last equality, we need to verify that {δ1, tβ8(σ3), δ3, tβ8(σ4), δ10,
tβ8

(σ5)} is topologically equivalent to {tβ8
(σ8), δ9, tβ8

(σ7), δ7, tβ8
(σ6), δ2}. This

follows from the fact that both Σf − δ1− δ3− δ10−σ3−σ4−σ5 and Σf − δ2−
δ7 − δ9 − σ6 − σ7 − σ8 are connected. For φ2 and φ3, it is easy to check that
Σf − δ5 − α3 − δ8 − α10 ≈ Σ8

f−4 ≈ Σf − α9 − δ4 − α6 − δ6 and that {β′5, α8} is
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topologically equivalent to {β, α8} and {α10, tα8
(β′2)} is topologically equiva-

lent to {α10, β}. Finally, observe that {β8, t
−1
α9

(σ9)} is topologically equivalent

to {β, t−1
α9

(σ9)} and t−1
α9

(σ9) = γ. �

δ1
δ2

δ3

δ4

δ5
δ7

γ9

δ8

δ6

δ10

δ9

α8

α10

δ1
δ2

δ3

δ4

δ5 δ7

γ9

δ8

δ6

δ10

δ9

α8

α10

Figure 8. Supports for a 9-holed torus relation and a lantern
relation and their embeddings into a genus 6 surface

δ1
δ2 δ10

δ9
σ3δ3

δ4

δ5

σ5

δ6
δ7

δ8
σ4

σ6

σ8

σ7

β

α5
α6

α7

α8

α10

δ1
δ10δ2

δ3 δ9

δ4

δ5
δ6

δ7

δ8

σ9
α1

α2

α3

α4

γ9

α9

Figure 9. Interior curves for a 10-holed torus relation

4. Signature computation

In order to compute the signature of the total space of surface bundles, we
first review the definition of Meyer’s signature cocycle.
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Definition. For any given A,B ∈ Sp(2g,R), consider the subspace

VA,B := {(x, y) ∈ R2g × R2g|(A−1 − I2g)x+ (B − I2g)y = 0}
of the real vector space R2g ×R2g and the bilinear form 〈, 〉A,B : (R2g ×R2g)×
(R2g × R2g)→ R defined by 〈(x1, y1), (x2, y2)〉A,B := (x1 + y1) · J(I2g − B)y2,
where · is the inner product of R2g and J is the matrix representing the mul-
tiplication by −

√
−1 on R2g = Cg. Since the restriction of 〈, 〉A,B on VA,B is

symmetric, we can define τg(A,B) := sign(〈, 〉A,B , VA,B).

We denote by ψ : Mod(Σg) → Sp(2g;R) the symplectic representation of
the mapping class group.

Theorem 4.1 ([25]). Let EA,B → P be an oriented Σg bundle over a pair
of pants P whose monodromy representation χ composed with the symplectic
representation ψ is given by ψ◦χ : π1(P, ∗)→ Sp(2g : R) sending one generator
to A and the other to B. Then σ(EA,B) = −τg(A,B).

We can easily check that τg is a 2-cocycle on the symplectic group Sp(2g,R)
using Novikov’s additivity. We call this τg Meyer’s signature cocycle. The
pants decomposition of any base surface gives the following signature formula.

Theorem 4.2 ([26]). Let f : E → Σrh be an oriented surface bundle with fiber
Σg and monodromy representation χ : π1(Σrh) → Mod(Σg). Fix a standard
presentation of π1(Σrh) as follows:

π1(Σrh) = 〈a1, b1, . . . , ah, bh, c1, . . . , cr|
h∏
i=1

[ai, bi]

r∏
j=1

cj = 1〉

and let τg be Meyer’s signature cocycle. Then the signature of E is given by
the formula

σ(E) =

h∑
i=1

τg(κi, βi)−
h∑
i=2

τg(κ1 · · ·κi−1, κi)−
r−1∑
j=1

τg(κ1 · · ·κhγ1 · · · γj−1, γj),

where αi = ψ ◦ χ(ai), βi = ψ ◦ χ(bi), γi = ψ ◦ χ(ci) and κi = [αi, βi].

By applying this formula, we can compute the signatures of surface bundles
obtained by taking out some neighborhoods of singular fibers from the Lefschetz
fibrations constructed in Section 3. We used Mathematica for computing each
term in the above formula.

Meyer also provided another interpretation of the above signature formula.
For this, we start with the following diagram.

1 → R̃ → F̃
π̃−→ π1(Σh) → 1

↓ ↓ ↓ χ
1 → R → F

π−→ Mod(Σg) → 1

Here, π1(Σh) = 〈a1, . . . , ah, b1, . . . , bh|
∏h
i=1[ai, bi] = 1〉, F̃ = 〈ã1, . . . , ãh, b̃1,

. . . , b̃h〉, R̃ is the normal closure of r̃ =
∏h
i=1[ãi, b̃i], and π̃ : ãi 7→ ai, b̃i 7→
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bi. The second row corresponds to the finite presentation of Mod(Σg) due to
Wajnryb. F = F (S), where S = {y1, y2, u1, . . . , ug, z1, . . . , zg−1} and R is the
normal closure of Aki,j ’s, B

k
i ’s, C1, D1, E1 (cf. [6, §3]). If we have a monodromy

representation χ : π1(Σh) → Mod(Σg), then there exists a homomorphism

χ̃ : F̃ → F such that χ ◦ π̃ = π ◦ χ̃ since π is surjective and F̃ is free. Hence we
have χ̃(r̃) ∈ R ∩ [F, F ]. Now define the 1-cochain c : F → Z cobounding the
2-cocycle −π∗ψ∗(τg) as follows.

c(x) :=

m∑
j=1

τg(ψ(π(x̃j−1)), ψ(π(xj))),

(x =

m∏
j=1

xj , xj ∈ S ∪ S−1, x̃j =

j∏
i=1

xi).

Since π∗ψ∗(τg) |R×R= 0, the restriction c |R: R→ Z is a homomorphism. The
values of c for the relations of Wajnryb’s presentation were calculated in [6].

Theorem 4.3 ([26]). Let p : E → Σh be a Σg-bundle over Σh and χ : π1(Σh)→
Mod(Σg) be its monodromy homomorphism. Then the signature of the total
space E is given as follows:

σ(E) = −c |R (χ̃(r̃)) (= −〈ψ∗[τg], χ̃(r̃)[R,F ]〉),
where 〈, 〉 is a pairing on the second cohomology and homology of Mod(Σg).

Now, we are ready to prove our main theorem.

Proof of Theorem 1.2. (a) We apply the subtraction operation to the Lefschetz
fibrations X → Σ3, Y1 → Σ2, and Y2 → Σ3 constructed in Propositions 3.5 and
Proposition 3.1. Let N1 ⊂ X be the neighborhood of four singular fibers with
coinciding vanishing cycles and N2 ⊂ X be the neighborhood of two singular
fibers with coinciding vanishing cycles. Then the complement X \ N1 \ N2

is the Σf bundle over Σ2
3, and its signature can be computed by applying

Theorem 4.2 to this bundle. More precisely to its monodromy representation

χ : π1(Σ2
3)→ Mod(Σf ) given by χ(a1) = (t−1

δ1
·tt−1

α1
(σ1) ·t

−1
δ2

)t
−2
α1 , χ(b1) = (φ1)t

−2
α1 ,

χ(a2) = (t−1
δ1
·tt−1

α1
(σ1)·t

−1
δ2

)t
−4
α1 , χ(b2) = (φ2)t

−4
α1 , χ(a3) = (t−1

δ2
·tt−1

α2
(σ2)·t

−1
δ3

)t
−4
α1
t−2
α2 ,

χ(b3) = (φ3)t
−4
α1
t−2
α2 , χ(c1) = t4α1

, and χ(c2) = t2α2
. Now, by computations using

Mathematica we have τ(κ1, β1) = τ(κ2, β2) = τ(κ3, β3) = 2, −τ(κ1, κ2) =
−τ(κ1κ2, κ3) = −2, and −τ(κ1κ2κ3, γ1) = 0. Hence, σ(X \ N1 \ N2) = 3 ·
2 + 2 · (−2) + 0 = 2. By taking out the neighborhood Mi of all singular
fibers from Yi (for i = 1, 2), we get Yi \Mi, the Σf bundles (one over Σ1

2 and
another over Σ1

3), both with signature −1. For signature computation, we can
directly apply Theorem 4.2 to these two bundles as above. Alternatively, we can
first compute the signature of Lefschetz fibrations: σ(Y1) = −2 and σ(Y2) =
−4 (cf. Proposition 15 and Proposition 16 in [8]). In order to compute the
signature of taken out parts, apply Theorem 4.1 several times and use the fact
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that σ(N(a nonseparating singular fiber)) = 0 (cf. [28]). From these, we have
σ(Y1\M1) = (−2)−(−1) = −1 and σ(Y2\M2) = (−4)−(−3) = −1. Therefore,
X−Y1−Y2 is the Σf≥3 bundle over Σ8, and σ(X−Y1−Y2) = σ(X \N1 \N2)+

σ(Y1 \M1) + σ(Y2 \M2) = 2 + 1 + 1 = 4 by Novikov additivity. Moreover, if
we pullback this bundle (or, with opposite orientation) to unramified coverings
of Σ8 of degree |n|, then we get b(f ≥ 3, n) ≤ 7|n|+ 1.

(b) Apply the subtraction operation to the Lefschetz fibrations Z → Σ4

and Y3 → Σ3, constructed in Proposition 3.6 and Proposition 3.3, respectively.
Then, Z−Y3 is the required Σf≥5 bundle over Σ7. Let N be the neighborhood
of all singular fibers in Z and let M be the neighborhood of all singular fibers
in Y3. By applying Theorem 4.2 to two surface bundles Z \N and Y3 \M , we

get σ(Z − Y3) = σ(Z \N) + σ(Y3 \M) = 2 + 2 = 4. Let me give you another
proof for verifying σ(Z−Y3) = 4 using Theorem 4.3. From Proposition 3.6 and

Proposition 3.3, we have χ̃(r̃) ≡ (E2 ·Lw1
5 ·L

w2
6 ·L

w3
5 ·L

tβ
6 )(L1 ·L

tytxtz
2 ·Ltz3 ·L4)g

modulo commutativity and braid relations, where g is a self-homeomorphism of
Σf≥5 such that g(α3) = b and g(α2) = c. Moreover, from [21], E2 ≡ L10 · (L9 ·
((C1)−1)z0)z1 for some mapping classes z0, z1, modulo commutativity and braid
relations. Observe that for each Li, four boundary curves are nonseparating
and Σf \ supp(Li) is connected. Since the same holds for the relation (D1)−1,
there exists a self-homeomorphism fi of Σf sending the supp((D1)−1) to the
supp(Li) for each i. Therefore, χ̃(r̃) ≡ ((D1)−1)f10((D1)−1)f9◦z1 ·((C1)−1)z0◦z1 ·
((D1)−1)f5◦w1 · ((D1)−1)f6◦w2 · ((D1)−1)f5◦w3 · ((D1)−1)f6◦tβ · ((D1)−1)f1◦g ·
((D1)−1)f2◦(tytxtz)◦g ·((D1)−1)f3◦tz◦g ·((D1)−1)f4◦g modulo commutativity and
braid relations and hence σ(Z −Y3) = −c(χ̃(r̃)) = c(C1) + 10 · c(D1) = (−6) +
10 = 4. For the upper bound for the genus function b(f ≥ 5, n), use the same
argument as before.

(c) Apply the subtraction operation to the Lefschetz fibrations W → Σ3

and Y4 → Σ3, constructed in Proposition 3.7 and Proposition 3.4, respec-
tively. Then W − Y4 is the required Σf≥6 bundle over Σ6 with signature 4.
From Proposition 3.4 and Proposition 3.7, χ̃(r̃) ≡ E8 · (L1 ·L2)h modulo braid
and commutativity relations, where h is a self-homeomorphism of Σf such

that h{β8, t
−1
α9

(σ9)} = {β, γ}. Moreover, E8 ≡ (
∏8
j=1((D1)−1)zj ) · ((C1)−1)z0

for some z0, . . . , z8 (cf. [21] and Proposition 3.7). Therefore, σ(W − Y4) =
−c(χ̃(r̃)) = c(C1) + 10 · c(D1) = (−6) + 10 = 4. For the upper bound for the
genus function b(f ≥ 6, n), use the same argument as before. �

Proof of Theorem 1.4. Every odd genus surface is a covering of genus three
surface. By Morita [27], after replacing a given surface bundle by a pullback
to some covering of the base, the resulting surface bundle admits a fiberwise
covering of any given degree. After applying this to the genus 3 surface bun-
dle over Σb3(1) with signature 4 and the degree of the covering Σf → Σ3,

we obtain bf ( f−1
2 n) ≤ n(b3(1) − 1) + 1. Hence, Gf := limn→∞

bf (n)
n ≤

limn→∞
2n(b3(1)−1)+2

(f−1)n ≤ limn→∞
14n+2
(f−1)n = 14

f−1 . �
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Remark 4.4. In [14, 22, 30], it was proven that H2(Mod(Σg);Z) ∼= Z for every
g ≥ 4 and H2(Mod(Σg);Z) ∼= Z ⊕ Z2 for g = 3. Meyer [26] proved that each
generator of H2(Mod(Σg))/Tor gives us signature 4 relying on the Theorem 4.3.
In order to prove this, Meyer used Birman-Hilden’s presentation of Mod(Σg),
and Endo [6] reproved this using a simpler presentation due to Wajnryb [32].
By taking χ̃(r̃) as different representatives for a generator of H2(Mod(Σg))/Tor,
we can construct various surface bundles with a fixed signature 4 as we have
seen in the proof of Theorem 1.2. Therefore, the problem to determine b(f, n)
is to find the most effective representative χ̃(r̃), in the sense of commutator
length, for n times generator of H2(Mod(Σf ))/Tor.
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