SPIN-STRUCTURES ON REAL BOTT MANIFOLDS

Anna GA̧sior

Abstract

Real Bott manifolds is a class of flat manifolds with holonomy group \mathbb{Z}_{2}^{k} of diagonal type. In this paper we formulate necessary and sufficient conditions of the existence of a Spin-structure on real Bott manifolds. It extends results of [9].

1. Introduction

Let M^{n} be a flat manifold of dimension n, i.e., a compact connected Riemannian manifold without boundary with zero sectional curvature. From the theorem of Bieberbach ([2], [17]) the fundamental group $\pi_{1}\left(M^{n}\right)=\Gamma$ determines a short exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}^{n} \rightarrow \Gamma \xrightarrow{p} G \rightarrow 0 \tag{1}
\end{equation*}
$$

where \mathbb{Z}^{n} is a maximal torsion free abelian subgroup of rank n and G is a finite group which is isomorphic to the holonomy group of M^{n}. The universal covering of M^{n} is the Euclidean space \mathbb{R}^{n} and hence Γ is isomorphic to a discrete cocompact subgroup of the isometry group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=\mathrm{O}(n) \times \mathbb{R}^{n}=$ $E(n)$. In that case $p: \Gamma \rightarrow G$ is a projection on the first component of the semidirect product $O(n) \ltimes \mathbb{R}^{n}$ and $\pi_{1}\left(M_{n}\right)=\Gamma$ is a subgroup of $O(n) \ltimes \mathbb{R}^{n}$. Conversely, given a short exact sequence of the form (1), it is known that the group Γ is (isomorphic to) the fundamental group of a flat manifold. In this case Γ is called a Bieberbach group. We can define a holonomy representation $\phi: G \rightarrow \mathrm{GL}(n, \mathbb{Z})$ by the formula:

$$
\begin{equation*}
\phi(g)(e)=\tilde{g} e(\tilde{g})^{-1} \tag{2}
\end{equation*}
$$

for all $e \in \mathbb{Z}^{n}, g \in G$ and where $p(\tilde{g})=g$. In this article we shall consider Bieberbach groups of rank n with holonomy group $\mathbb{Z}_{2}^{k}, 1 \leq k \leq n-1$, and $\phi\left(\mathbb{Z}_{2}^{k}\right) \subset D \subset G \mathrm{GL}(n, \mathbb{Z})$. Here D is the group of matrices with ± 1 on the diagonal.

Received February 5, 2016; Revised August 4, 2016.
2010 Mathematics Subject Classification. Primary 53C27; Secondary 53C29, 57S25, 20H15.

Key words and phrases. real Bott manifolds, spin-structure.
Author is supported by the Polish National Science Center grant DEC-2013/09/B/ ST1/04125.

Let

$$
\begin{equation*}
M_{n} \xrightarrow{\mathbb{R} P^{1}} M_{n-1} \xrightarrow{\mathbb{R} P^{1}} \cdots \xrightarrow{\mathbb{R} P^{1}} M_{1} \xrightarrow{\mathbb{R} P^{1}} M_{0}=\{\bullet\} \tag{3}
\end{equation*}
$$

be a sequence of real projective bundles such that $M_{i} \rightarrow M_{i-1}, i=1,2, \ldots, n$, is a projective bundle of a Whitney sum of a real line bundle L_{i-1} and the trivial line bundle over M_{i-1}. The sequence (3) is called the real Bott tower and the top manifold M_{n} is called the real Bott manifold, [4].

Let γ_{i} be the canonical line bundle over M_{i} and we set $x_{i}=w_{1}\left(\gamma_{i}\right)\left(w_{1}\right.$ is the first Stiefel-Whitney class). Since $H^{1}\left(M_{i-1}, \mathbb{Z}_{2}\right)$ is additively generated by $x_{1}, x_{2}, \ldots, x_{i-1}$ and L_{i-1} is a line bundle over M_{i-1}, we can uniquely write

$$
\begin{equation*}
w_{1}\left(L_{i-1}\right)=\sum_{l=1}^{i-1} a_{l i} x_{l} \tag{4}
\end{equation*}
$$

where $a_{l i} \in \mathbb{Z}_{2}$ and $i=2,3, \ldots, n$.
From above we obtain the matrix $A=\left[a_{l i}\right]$ which is an $n \times n$ strictly upper triangular matrix whose diagonal entries are 0 and remaining entries are either 0 or 1 . One can observe (see [12]) that the tower (3) is completely determined by the matrix A and therefore we may denote the real Bott manifold M_{n} by $M(A)$. From [12, Lemma 3.1] we can consider $M(A)$ as the orbit space $M(A)=\mathbb{R}^{n} / \Gamma(A)$, where $\Gamma(A) \subset E(n)$ is generated by elements

$$
s_{i}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & . & . & \ldots & 0 \tag{5}\\
0 & 1 & 0 & . & . & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & (-1)^{a_{i, i+1}} & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & (-1)^{a_{i, n}}
\end{array}\right],\left(\begin{array}{c}
0 \\
. \\
0 \\
\frac{1}{2} \\
0 \\
. \\
0 \\
0
\end{array}\right) \in E(n),
$$

where $(-1)^{a_{i, i+1}}$ is in the $(i+1, i+1)$ position and $\frac{1}{2}$ is the i th coordinate of the last column, $i=1,2, \ldots, n-1 . s_{n}=\left(I,\left(0,0, \ldots, 0, \frac{1}{2}\right)\right) \in E(n)$. From [12, Lemmas 3.2 and 3.3] $s_{1}^{2}, s_{2}^{2}, \ldots, s_{n}^{2}$ commute with each other and generate a free abelian subgroup \mathbb{Z}^{n}. In other words $M(A)$ is a flat manifold with holonomy group \mathbb{Z}_{2}^{k} of diagonal type. Here k is a number of non zero rows of a matrix A.

We have the following two lemmas.
Lemma 1.1 ([12], Lemma 2.1). The cohomology ring $H^{*}\left(M(A), \mathbb{Z}_{2}\right)$ is generated by degree one elements x_{1}, \ldots, x_{n} as a graded ring with n relations

$$
x_{j}^{2}=x_{j} \sum_{i=1}^{n} a_{i j} x_{i},
$$

for $j=1, \ldots, n$.
Lemma 1.2 ([12], Lemma 2.2). The real Bott manifold $M(A)$ is orientable if and only if the sum of entries is $0(\bmod 2)$ for each row of the matrix A.

There are a few ways to decide whether there exists a Spin-structure on an oriented flat manifold M^{n}. We start with:

Definition 1.1 ([7]). An oriented flat manifold M^{n} has a Spin-structure if and only if there exists a homomorphism $\epsilon: \Gamma \rightarrow \operatorname{Spin}(n)$ such that $\lambda_{n} \epsilon=p$, where $\lambda_{n}: \operatorname{Spin}(n) \rightarrow \mathrm{SO}(n)$ is the covering map.

There is an equivalent condition for existence of Spin-structure. It is well known ([7]) that the closed oriented differential manifold M has a Spin-structure if and only if the second Stiefel-Whitney class vanishes.

The k th Stiefel-Whitney class [13, page 3, (2.1)] is given by the formula

$$
\begin{equation*}
w_{k}(M(A))=(B(p))^{*} \sigma_{k}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in H^{k}\left(M(A) ; \mathbb{Z}_{2}\right) \tag{6}
\end{equation*}
$$

where σ_{k} is the k th elementary symmetric function, $B(p)$ is a map induced by p on the classification space and

$$
\begin{equation*}
y_{i}:=w_{1}\left(L_{i-1}\right) \tag{7}
\end{equation*}
$$

for $i=2,3, \ldots, n$. Hence,

$$
\begin{equation*}
w_{2}(M(A))=\sum_{1<i<j \leq n} y_{i} y_{j} \in H^{2}\left(M(A) ; \mathbb{Z}_{2}\right) \tag{8}
\end{equation*}
$$

Definition 1.2 ([4], page 4). A binary square matrix A is a Bott matrix if $A=P B P^{-1}$ for a permutation matrix P and a strictly upper triangular binary matrix B.

Our paper is a sequel of [9]. There are given some conditions of the existence of Spin-structures.
Theorem 1.1 ([9], page 1021). Let A be a matrix of an orientable real Bott manifold $M(A)$.
(1) Let $l \in \mathbb{N}$ be an odd number. If there exist $1 \leq i<j \leq n$ and rows $A_{i, *}, A_{j, *}$ such that

$$
\sharp\left\{m: a_{i, m}=a_{j, m}=1\right\}=l
$$

and

$$
a_{i j}=0,
$$

then $M(A)$ has no Spin-structure.
(2) If $a_{i j}=1$ and there exist $1 \leq i<j \leq n$ and rows

$$
\begin{aligned}
& A_{i, *}=\left(0, \ldots, 0, a_{i, i_{1}}, \ldots, a_{i, i_{2 k}}, 0, \ldots, 0\right) \\
& A_{j, *}=\left(0, \ldots, 0, a_{j, i_{2 k+1}}, \ldots, a_{j, i_{2 k+2 l}}, 0, \ldots, 0\right) \\
& \text { such that } a_{i, i_{1}}=\cdots=a_{i, i_{2 k}}=1, a_{i, m}=0 \text { for } m \notin\left\{i_{1}, \ldots, i_{2 k}\right\}, \\
& a_{j, i_{2 k+1}}=\cdots=a_{j, i_{2 k+2 l}=1, a_{j, r}=0 \text { for } r \notin\left\{i_{2 k+1}, \ldots, i_{2 k+2 l}\right\} \text { and } l,} \\
& k \text { are odd, then } M(A) \text { has no Spin-structure. }
\end{aligned}
$$

In this paper we extend this theorem and we formulate necessary and sufficient conditions of the existence of a Spin-structure on real Bott manifolds. Here is our main result for Bott manifolds with holonomy group \mathbb{Z}_{2}^{k}.
Theorem 1.2. Let A be a Bott matrix. Then the real Bott manifold $M(A)$ has a Spin-structure if and only if for all $1 \leq i<j \leq n$ manifolds $M\left(A_{i j}\right)$ have a Spin-structure, where $A_{i j}$ is the \mathbb{Z}_{2}-matrix consisting of ith and jth rows of A.

In fact our condition reduces problem of existence of Spin-structure to the case of Bott manifold with holonomy \mathbb{Z}_{2}^{2}.

The structure of the paper is as follows. In Section 2 we prove a formula about the second Stiefel-Whitney class of the real Bott manifolds. This is the main tool in the proof of our main result. Section 3 has a very technical character. In this section we shall give a complete characterization of the existence of the Spin-structure on manifolds $M\left(A_{i j}\right), 1 \leq i<j \leq n$.

The author is grateful to Andrzej Szczepański for his valuable remarks and help. The author is grateful to reviewer for his suggestions.

2. Proof of the Main Theorem

We have the following lemma.
Lemma 2.1. Let A be an $n \times n$ the Bott matrix. Then,

$$
w_{2}(M(A))=\sum_{1 \leq i<j \leq k} w_{2}\left(M\left(A_{i j}\right)\right) .
$$

Proof. From Lemma 1.1 and ([3]) we have that the second cohomology group of $H^{2}\left(M(A), \mathbb{Z}_{2}\right)$ has a basis

$$
\mathcal{B}=\left\{x_{i} x_{j}: 1 \leq i<j \leq n\right\} .
$$

Moreover, also from Lemma $1.1 x_{j}^{2}$ can be expressed by a linear combination of $x_{k} x_{j}$ for $k<j$. Note that this combination always contains an x_{j}-term. Hence, we get that $w_{2}(M(A))$ is a sum of linear elements

$$
w_{2}(M(A))=\sum_{k<j} x_{k} x_{j} .
$$

Each term $x_{k} x_{j}$ of this sum is an element from basis \mathcal{B} and it is equal to the second Stiefel-Whitney class of the real Bott manifold $M\left(A_{k j}\right)$, so we get

$$
w_{2}(M(A))=\sum_{k<j} x_{k} x_{j}=w_{2}\left(M\left(A_{k j}\right)\right) .
$$

Thus, the second Stiefel-Whitney class of the real Bott manifold $M(A)$ is equal to the sum of second Stiefel-Whitney classes of elementary components $M\left(A_{k j}\right), k<j$.

From proof of Lemma 2.1 we obtain the proof of Main Theorem 1.2.

Proof of Theorem 1.2. Let us recall the manifold M has a Spin-structure if and only if $w_{2}(M)=0$. At the beginning let us assume, that for each pair $1 \leq i<j \leq n$, we have $w_{2}\left(M\left(A_{i j}\right)\right)=0$. Then from Lemma 2.1 we have

$$
w_{2}(M(A))=\sum_{1 \leq i<j \leq k} w_{2}\left(M\left(A_{i j}\right)\right)=0
$$

so the real Bott manifold $M(A)$ has a Spin-structure.
On the other hand, if the manifold $M(A)$ admits the Spin-structure, then

$$
0=w_{2}(M(A))=\sum_{1 \leq i<j \leq k} w_{2}\left(M\left(A_{i j}\right)\right) .
$$

Since the second Stiefel-Whitney classes of $M\left(A_{i j}\right)$ are non negative so for all $1 \leq i<j \leq n$ we get

$$
w_{2}\left(M\left(A_{i j}\right)\right)=0
$$

In the next section of our paper we concentrate on calculations of Spinstructure on manifolds $A_{i j}$.

3. Existence of Spin-structure on manifolds $M\left(A_{i j}\right)$

From now, let A be a matrix of an orientable real Bott manifold $M(A)$ of dimension n with two non-zero rows. From Lemma 1.2 we have that the number of entries 1 , in each row, is an odd number and we have following three cases:
CASE I. There are no columns with double entries 1,
CASE II. The number of columns with double entries 1 is an odd number,
CASE III. The number of columns with double entries 1 is an even number.
We give conditions for an existence of the Spin-structure on $M\left(A_{i j}\right)$. In the further part of the paper we adopt the notation $0_{p}=(\underbrace{0, \ldots, 0}_{p-\text { times }})$. From the definition, rows of number i and j correspond to generators s_{i}, s_{j} which define a finite index abelian subgroup $H \subset \pi_{1}(M(A))$ (see [10]).

Theorem 3.1. 1. Let A be a matrix of an orientable real Bott manifold $M(A)$ from the above Case I. If there exist $1 \leq i<j \leq n$ such that

$$
\begin{aligned}
& A_{i, *}=\left(0_{i_{1}}, a_{i, i_{1}+1}, \ldots, a_{i, i_{1}+2 k}, 0_{i_{2 l}}, 0_{i_{p}}\right) \\
& A_{j, *}=\left(0_{i_{1}}, 0_{i_{2 k}}, a_{j, i_{1}+2 k+1}, \ldots, a_{j, i_{1}+2 k+2 l}, 0_{i_{p}}\right)
\end{aligned}
$$

where $a_{i, m}=1$ for $m \in\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}, a_{j, r}=1$ for $r \in\left\{i_{1}+2 k+\right.$ $\left.1, \ldots, i_{1}+2 k+2 l\right\}$, then $M(A)$ admits the Spin-structure if and only if either l is an even number or l is an odd number and $j \notin\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}$.
2. Let A be a matrix of an orientable real Bott manifold $M(A)$ from the above Case I. If there exist $1 \leq i<j \leq n$ such that

$$
\begin{aligned}
& A_{i, *}=\left(0_{i_{1}}, 0_{i_{2 k}}, a_{i, i_{2 k}+1}, \ldots, a_{i, i_{2 k}+2 l}, 0_{i_{p}}\right), \\
& A_{j, *}=\left(0_{i_{1}}, a_{j, i_{1}+1}, \ldots, a_{j, i_{1}+2 k}, 0_{i_{2 l}}, 0_{i_{p}}\right),
\end{aligned}
$$

where $a_{j, m}=1$ for $m \in\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}, a_{i, r}=1$ for $r \in\left\{i_{2 k}+1, \ldots, i_{2 k}+\right.$ $2 l\}$, then $M(A)$ has the Spin-structure.
Proof. 1. From (7) we have

$$
\begin{aligned}
y_{i_{1}+1} & =\cdots=y_{i_{1}+2 k}=x_{i}, \\
y_{i_{1}+2 k+1} & =\cdots=y_{i_{1}+2 k+2 l}=x_{j} .
\end{aligned}
$$

Using (8) and $x_{i}^{2}=x_{i} \sum_{j=1}^{n} a_{j i} x_{j}$ we get

$$
\begin{aligned}
w_{2}(M(A)) & =k(2 k-1) x_{i}^{2}+4 k l x_{i} x_{j}+l(2 l-1) x_{j}^{2} \\
& =k(2 k-1) x_{i}^{2}+l(2 l-1) x_{j}^{2}=l(2 l-1) x_{j}^{2}=l x_{j}^{2}
\end{aligned}
$$

Summing up, we have to consider the following cases
(1) if $l=2 b$, then $w_{2}(M(A))=2 b x_{j}^{2}=0$. Hence $M(A)$ has a Spin-structure,
(2) if $l=2 b+1$, then

$$
\begin{aligned}
w_{2}(M(A)) & =(2 b+1) x_{j}^{2}=x_{j}^{2} \\
& = \begin{cases}0, & \text { if } j \notin\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}, M(A) \text { has a Spin-structure } \\
x_{i} x_{j}, & \text { if } j \in\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}, M(A) \text { has no Spin-structure. }\end{cases}
\end{aligned}
$$

2. From (7)

$$
\begin{aligned}
y_{i_{1}+1} & =\cdots=y_{i_{1}+2 k}=x_{j} \\
y_{i_{1}+2 k+1} & =\cdots=y_{i_{1}+2 k+2 l}=x_{i} .
\end{aligned}
$$

Moreover, from (8) and since $i_{1}>j>i$

$$
\begin{aligned}
w_{2}(M(A)) & =k(2 k-1) x_{j}^{2}+4 k l x_{i} x_{j}+l(2 l-1) x_{i}^{2} \\
& =k(2 k-1) \underbrace{x_{j}^{2}}_{=0}+l(2 l-1) \underbrace{x_{i}^{2}}_{=0}=0 .
\end{aligned}
$$

Hence $M(A)$ has the Spin-structure.
Theorem 3.2. 1. Let A be a matrix of an orientable real Bott manifold $M(A)$ from the above Case II. If there exist $1 \leq i<j \leq n$ such that
$A_{i, *}=\left(0_{i_{1}}, a_{i, i_{1}+1}, \ldots, a_{i, i_{1}+2 k}, a_{i, i_{1}+2 k+1}, \ldots, a_{i, i_{1}+2 k+2 l}, 0_{i_{2 m}}, 0_{i_{p}}\right)$,
$A_{j, *}=\left(0_{i_{1}}, 0_{i_{2 k}}, a_{j, i_{1}+2 k+1}, \ldots, a_{j, i_{1}+2 k+2 l}, a_{j, i_{1}+2 k+2 l+1}, \ldots, a_{j, i_{1}+2 k+2 l+2 m}, 0_{i_{p}}\right)$,
where $a_{i, r}=1$ for $r \in\left\{i_{1}+1, \ldots, i_{1}+2 k+2 l\right\}, a_{j, s}=1$ for $s \in\left\{i_{1}+2 k+\right.$ $\left.1, \ldots, i_{1}+2 k+2 l+2 m\right\}$, then $M(A)$ has the Spin-structure if and only if either l and m are numbers of the same parity or l and m are numbers of different parity and $j \notin\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}$.
2. Let A be a matrix of an orientable real Bott manifold $M(A)$ from the above case II. If there exist $1 \leq i<j \leq n$ such that
$A_{i, *}=\left(0_{i_{1}}, 0_{i_{1}+2 k}, a_{i, i_{1}+2 k+1}, \ldots, a_{i, i_{1}+2 k+2 l}, a_{i, i_{1}+2 k+2 l+1}, \ldots, a_{i, i_{1}+2 k+2 l+2 m}, 0_{i_{p}}\right)$,
$A_{j, *}=\left(0_{i_{1}}, a_{j, i_{1}+1}, \ldots, a_{j, i_{1}+2 k}, a_{j, i_{1}+2 k+1}, \ldots, a_{j, i_{1}+2 k+2 l}, 0_{i_{2 m}}, 0_{i_{p}}\right)$,
where $a_{j, m}=1$ for $m \in\left\{i_{1}+1, \ldots, i_{1}+2 k+2 l\right\}, a_{i, r}=1$ for $r \in\left\{i_{1}+2 k+\right.$ $\left.1, \ldots, i_{1}+2 k+2 l+2 m\right\}$, then $M(A)$ has the Spin-structure.
Proof. 1. From (7) we have

$$
\begin{aligned}
y_{i_{1}+1} & =\cdots=y_{i_{1}+2 k}=x_{i} \\
y_{i_{1}+2 k+1} & =\cdots=y_{i_{1}+2 k+2 l}=x_{i}+x_{j} \\
y_{i_{1}+2 k+2 l+1} & =\cdots=y_{i_{1}+2 k+2 l+2 m}=x_{j} .
\end{aligned}
$$

From (8) and $x_{i}^{2}=x_{i} \sum_{j=1}^{n} a_{j i} x_{j}$ we get

$$
\begin{aligned}
w_{2}(M(A)) & =k(2 k-1) x_{i}^{2}+4 k l x_{i}\left(x_{i}+x_{j}\right)+l(2 l-1)\left(x_{i}+x_{j}\right)^{2}+m(2 m-1) x_{j}^{2} \\
& =l(2 l-1) x_{j}^{2}+m(2 m-1) x_{j}^{2}=(l+m) x_{j}^{2}
\end{aligned}
$$

We have to consider the following cases:
(1) If $l+m$ is an even number, then $w_{2}(M(A))=0$. Hence $M(A)$ has a Spin-structure.
(2) If $l+m$ is an odd number, then

$$
\begin{aligned}
w_{2}(M(A)) & =x_{j}^{2} \\
& = \begin{cases}0, & \text { if } j \notin\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}, M(A) \text { has a Spin-structure } \\
x_{i} x_{j}, & \text { if } j \in\left\{i_{1}+1, \ldots, i_{1}+2 k\right\}, M(A) \text { has no Spin-structure. }\end{cases}
\end{aligned}
$$

2. Using (7) we get

$$
\begin{aligned}
y_{i_{1}+1} & =\cdots=y_{i_{1}+1}=x_{j} \\
y_{i_{1}+2 k+1} & =\cdots=y_{i_{1}+2 k+2 l}=x_{i}+x_{j} \\
y_{i_{1}+2 k+2 l+1} & =\cdots=y_{i_{1}+2 k+2 l+2 m}=x_{i}
\end{aligned}
$$

Moreover, from (8) and since $i_{1}>j>i$

$$
\begin{aligned}
w_{2}(M(A))= & k(2 k-1) x_{j}^{2}+l(2 l-1) x_{i}^{2}+4 k l x_{j}\left(x_{i}+x_{j}\right)+4 k m x_{i} x_{j} \\
& +4 l m x_{i}\left(x_{i}+x_{j}\right)+l(2 l-1)\left(x_{i}+x_{j}\right)^{2}+m(2 m-1) x_{i}^{2} \\
= & k(2 k-1) \underbrace{x_{j}^{2}}_{=0}+l(2 l-1) \underbrace{x_{i}^{2}}_{=0}+l(2 l-1) \underbrace{x_{j}^{2}}_{=0}+m(2 m-1) \underbrace{x_{i}^{2}}_{=0} \\
= & 0 .
\end{aligned}
$$

Hence $M(A)$ has a Spin-structure.
Theorem 3.3. 1. Let A be a matrix of an orientable real Bott manifold $M(A)$ from the above Case III. If there exist $1 \leq i<j \leq n$ such that
$A_{i, *}=\left(0_{i_{1}}, a_{i, i_{1}+1}, \ldots, a_{i, i_{1}+2 k+1}, a_{i, i_{1}+2 k+2}, \ldots, a_{i, i_{1}+2 k+2 l+2}, 0_{i_{2 m+1}}, 0_{i_{p}}\right)$,
$A_{j, *}=\left(0_{i_{1}}, 0_{i_{2 k+1}}, a_{j, i_{2 k+2}}, \ldots, a_{j, i_{1}+2 k+2 l+2}, a_{j, i_{1}+2 k+2 l+3}, \ldots, a_{j, i_{1}+2 k+2 l+2 m+3}, 0_{i_{p}}\right)$, where $a_{i, r}=1$ for $r \in\left\{i_{1}+1, \ldots, i_{1}+2 k+2 l+2\right\}, a_{j, s}=1$ for $s \in\left\{i_{1}+2 k+\right.$ $\left.2, \ldots, i_{1}+2 k+2 l+2 m+3\right\}$, then $M(A)$ admits the Spin-structure if and only if l and m are numbers of the same parity and $j \in\left\{i_{1}+1, \ldots, i_{1}+2 k+2\right\}$.
2. Let A be a matrix of an orientable real Bott manifold $M(A)$ from the above case III. If there exist $1 \leq i<j \leq n$ such that
$A_{i, *}=\left(0_{i_{1}}, 0_{i_{2 l+1}}, a_{i, i_{1}+2 k+2}, \ldots, a_{i, i_{1}+2 k+2 l+2}, a_{i, i_{1}+2 k+2 l+3}, \ldots, a_{i, i_{1}+2 k+2 l+2 m+3}, 0_{i_{p}}\right)$,
$A_{j, *}=\left(0_{i_{1}}, a_{j, i_{1}+1}, \ldots, a_{j, i_{1}+2 k+1}, a_{j, i_{1}+2 k+2}, \ldots, a_{j, i_{1}+2 k+2 l+2}, 0_{i_{2 m}}, 0_{i_{p}}\right)$,
where $a_{j, m}=1$ for $m \in\left\{i_{1}+1, \ldots, i_{1}+2 k+2 l+2\right\}, a_{i, r}=1$ for $r \in$ $\left\{i_{1}+2 k+2, \ldots, i_{1}+2 k+2 l+2 m+3\right\}$, then $M(A)$ has no Spin-structure.

Proof. 1. From (7)

$$
\begin{aligned}
y_{i_{1}+1} & =\cdots=y_{i_{1}+2 k+1}=x_{i}, \\
y_{i_{1}+2 k+2} & =\cdots=y_{i_{1}+2 k+2 l+2}=x_{i}+x_{j}, \\
y_{i_{1}+2 k+2 l+3} & =\cdots=y_{i_{1}+2 k+2 l+2 m+3}=x_{j} .
\end{aligned}
$$

From (8) and $x_{i}^{2}=x_{i} \sum_{j=1}^{n} a_{j i} x_{j}$ we obtain

$$
\begin{aligned}
w_{2}(M(A))= & k(2 k+1) x_{i}^{2}+(2 k+1)(2 l+1) x_{i}\left(x_{i}+x_{j}\right)+(2 k+1)(2 m+1) x_{i} x_{j} \\
& +l(2 l+1)\left(x_{i}+x_{j}\right)^{2}+(2 l+1)(2 m+1) x_{j}\left(x_{i}+x_{j}\right) \\
& +m(2 m+1) x_{j}^{2} \\
= & (l+m+1) x_{j}^{2}+(2 l+1)(2 m+1) x_{i} x_{j} \\
= & (l+m+1) x_{j}^{2}+x_{i} x_{j} .
\end{aligned}
$$

Now, if l and m are number of the same parity we have

$$
\begin{aligned}
& w_{2}(M(A))=x_{i} x_{j}+x_{j}^{2} \\
= & \begin{cases}x_{i} x_{j}, & \text { if } j \notin\left\{i_{1}+1, \ldots, i_{1}+2 k+2\right\}, M(A) \text { has no Spin-structure }, \\
0, & \text { if } j \in\left\{i_{1}+1, \ldots, i_{1}+2 k+2\right\}, M(A) \text { has a Spin-structure }\end{cases}
\end{aligned}
$$

2. From (7)

$$
\begin{aligned}
y_{i_{1}+1} & =\cdots=y_{i_{1}+2 k+1}=x_{j}, \\
y_{i_{1}+2 k+2} & =\cdots=y_{i_{1}+2 k+2 l+2}=x_{i}+x_{j}, \\
y_{i_{1}+2 k+2 l+3} & =\cdots=y_{i_{1}+2 k+2 l+2 m+3}=x_{i} .
\end{aligned}
$$

From (8) and since $i_{1}>j>i$ we get

$$
\begin{aligned}
w_{2}(M(A))= & k(2 k+1) x_{j}^{2}+m(2 m+1) x_{i}^{2}+(2 k+1)(2 l+1) x_{j}\left(x_{i}+x_{j}\right) \\
& +(2 k+1)(2 m+1) x_{i} x_{j}+l(2 l+1)\left(x_{i}+x_{j}\right)^{2} \\
& +(2 l+1)(2 m+1) x_{i}\left(x_{i}+x_{j}\right)+m(2 m-1) x_{i}^{2} \\
= & k(2 k+1) \underbrace{x_{j}^{2}}_{=0}+l(2 l+1) \underbrace{\left(x_{i}+x_{j}\right)^{2}}_{=0}+m(2 m+1) \underbrace{x_{i}^{2}}_{=0} \\
& +x_{j}\left(x_{i}+x_{j}\right)+x_{i} x_{j}+x_{i}\left(x_{i}+x_{j}\right)=x_{i} x_{j} \neq 0,
\end{aligned}
$$

so $M(A)$ has no Spin-structure.
At the end we illustrate our consideration by an example.

Example 3.1. Let

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We have the following elementary components of A

$$
\underbrace{\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}_{A_{12}}, \underbrace{\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}_{A_{13}}, \underbrace{\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}_{A_{14}},
$$

From Theorems 3.1, 3.2, 3.3 we get that manifolds $M\left(A_{13}\right), M\left(A_{24}\right)$ have no Spin-structure and all others elementary components have Spin-structure. So, from Theorem 1.2 for the manifold $M(A)$ we get

$$
\omega_{2}(M(A))=x_{1} x_{3}+x_{2} x_{4}
$$

References

[1] L. Auslander and R. H. Szczarba, Characteristic classes of compact solvmanifolds, Ann. of Math. 76 (1962), 1-8.
[2] L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, 1986.
[3] S. Choi, M. Masuda, and S. Murai, Invariance of Pontrjagin classes for Bott manifolds, Algebr. Geom. Topol. 15 (2015), no. 2, 965-986.
[4] S. Choi, M. Masuda, and S. Oum, Classification of real Bott manifolds and acyclic digraphs, arXiv:1006.4658.
[5] S. Console, R. J. Miatello, and J. P. Rossetti, \mathbb{Z}_{2}-cohomology and spectral properties of flat manifolds of diagonal type, J. Geom. Phys. 60 (2010), no. 5, 760-781.
[6] K. Dekimpe and N. Petrosyan, Homology of Hantzsche-Wendt groups, Contemporary Mathematics 501, pp. 87-102, Amer. Math. Soc. Providence, RI, 2009.
[7] T. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, 2000.
[8] A. Ga̧sior and A. Szczepański, Tangent bundles of Hantzsche-Wendt manifolds, J. Geom. Phys. 70 (2013), 123-129.
[9] , Flat manifolds with holonomy group Z_{2}^{k} of diagonal type, Osaka J. Math. 51 (2014), no. 4, 1015-1025.
[10] M. Grossberg and Y. Karshon, Bott towers, complete integrability and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23-58.
[11] G. Hiss and A. Szczepański, Spin-structures on flat manifolds with cyclic holonomy, Comm. Algebra 36 (2008), no. 1, 11-22.
[12] Y. Kamishima and M. Masuda, Cohomological rigidity of real Bott manifolds, Alebr. Geom. Topol. 9 (2009), no. 4, 2479-2502.
[13] R. Lee and R. H. Szczarba, On the integral Pontrjagin classes of a Riemannian flat manifolds, Geom. Dedicata 3 (1974), 1-9.
[14] A. Nazra, Diffeomorphism Classes of Real Bott Manifolds, Tokyo J. Math. 34 (2011), no. 1, 229-260.
[15] J. P. Rossetti and A. Szczepański, Generalized Hantzsche-Wendt flat manifolds, Rev. Mat. Iberoamericana 21 (2005), no. 3, 1053-1070.
[16] A. Szczepański, Properties of generalized Hantzsche - Wendt groups, J. Group Theory 12 (2009), no. 5, 761-769.
[17] \qquad , Geometry of Crystallographic Groups, Algebra and Discrete Mathematics, vol. 4, World Scientific, 2012.

Anna Gąsior
Maria Curie-SkŁodowska University
Institute of Mathematics
pl. Marii Curie-SkŁodowskiej 1
20-031 Lublin, Poland
E-mail address: anna.gasior@poczta.umcs.lublin.pl

