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SPIN-STRUCTURES ON REAL BOTT MANIFOLDS

Anna Ga̧sior

Abstract. Real Bott manifolds is a class of flat manifolds with holo-
nomy group Zk

2 of diagonal type. In this paper we formulate necessary
and sufficient conditions of the existence of a Spin-structure on real Bott
manifolds. It extends results of [9].

1. Introduction

Let Mn be a flat manifold of dimension n, i.e., a compact connected Rie-
mannian manifold without boundary with zero sectional curvature. From the
theorem of Bieberbach ([2], [17]) the fundamental group π1(M

n) = Γ deter-
mines a short exact sequence:

(1) 0 → Zn → Γ
p→ G → 0,

where Zn is a maximal torsion free abelian subgroup of rank n and G is a
finite group which is isomorphic to the holonomy group of Mn. The universal
covering of Mn is the Euclidean space Rn and hence Γ is isomorphic to a
discrete cocompact subgroup of the isometry group Isom(Rn) = O(n) × Rn =
E(n). In that case p : Γ → G is a projection on the first component of the
semidirect product O(n) ⋉ Rn and π1(Mn) = Γ is a subgroup of O(n) ⋉ Rn.
Conversely, given a short exact sequence of the form (1), it is known that the
group Γ is (isomorphic to) the fundamental group of a flat manifold. In this
case Γ is called a Bieberbach group. We can define a holonomy representation
φ : G → GL(n,Z) by the formula:

(2) φ(g)(e) = g̃e(g̃)−1

for all e ∈ Zn, g ∈ G and where p(g̃) = g. In this article we shall consider
Bieberbach groups of rank n with holonomy group Zk

2 , 1 ≤ k ≤ n − 1, and
φ(Zk

2) ⊂ D ⊂ GL(n,Z). Here D is the group of matrices with ±1 on the
diagonal.
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Let

(3) Mn
RP 1

→ Mn−1
RP 1

→ · · · RP
1

→ M1
RP 1

→ M0 = {•}
be a sequence of real projective bundles such that Mi → Mi−1, i = 1, 2, . . . , n,
is a projective bundle of a Whitney sum of a real line bundle Li−1 and the
trivial line bundle over Mi−1. The sequence (3) is called the real Bott tower
and the top manifold Mn is called the real Bott manifold, [4].

Let γi be the canonical line bundle over Mi and we set xi = w1(γi) (w1 is
the first Stiefel-Whitney class). Since H1(Mi−1,Z2) is additively generated by
x1, x2, . . . , xi−1 and Li−1 is a line bundle over Mi−1, we can uniquely write

(4) w1(Li−1) =
i−1
∑

l=1

alixl,

where ali ∈ Z2 and i = 2, 3, . . . , n.
From above we obtain the matrix A = [ali] which is an n× n strictly upper

triangular matrix whose diagonal entries are 0 and remaining entries are either
0 or 1. One can observe (see [12]) that the tower (3) is completely determined
by the matrix A and therefore we may denote the real Bott manifold Mn

by M(A). From [12, Lemma 3.1] we can consider M(A) as the orbit space
M(A) = Rn/Γ(A), where Γ(A) ⊂ E(n) is generated by elements

(5) si =













































1 0 0 . . ... 0
0 1 0 . . ... 0
. . . . . ...

0 ... 0 1 0 ... 0
0 ... 0 0 (−1)ai,i+1 ... 0
. . . . . ...

0 ... 0 0 0 ... (−1)ai,n
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0
.

0
1
2

0
.

0
0

















































∈ E(n),

where (−1)ai,i+1 is in the (i + 1, i+ 1) position and 1
2
is the ith coordinate of

the last column, i = 1, 2, . . . , n− 1. sn =
(

I,
(

0, 0, . . . , 0, 1
2

))

∈ E(n). From [12,

Lemmas 3.2 and 3.3] s21, s
2
2, . . . , s

2
n commute with each other and generate a free

abelian subgroup Zn. In other words M(A) is a flat manifold with holonomy
group Zk

2 of diagonal type. Here k is a number of non zero rows of a matrix A.
We have the following two lemmas.

Lemma 1.1 ([12], Lemma 2.1). The cohomology ring H∗(M(A),Z2) is gener-
ated by degree one elements x1, . . . , xn as a graded ring with n relations

x2
j = xj

n
∑

i=1

aijxi,

for j = 1, . . . , n.

Lemma 1.2 ([12], Lemma 2.2). The real Bott manifold M(A) is orientable if

and only if the sum of entries is 0 (mod 2) for each row of the matrix A.
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There are a few ways to decide whether there exists a Spin-structure on an
oriented flat manifold Mn. We start with:

Definition 1.1 ([7]). An oriented flat manifold Mn has a Spin-structure if and
only if there exists a homomorphism ǫ : Γ → Spin(n) such that λnǫ = p, where
λn : Spin(n) → SO(n) is the covering map.

There is an equivalent condition for existence of Spin-structure. It is well
known ([7]) that the closed oriented differential manifoldM has a Spin-structure
if and only if the second Stiefel-Whitney class vanishes.

The kth Stiefel-Whitney class [13, page 3, (2.1) ] is given by the formula

(6) wk(M(A)) = (B(p))∗σk(y1, y2, . . . , yn) ∈ Hk(M(A);Z2),

where σk is the kth elementary symmetric function, B(p) is a map induced by
p on the classification space and

(7) yi := w1(Li−1)

for i = 2, 3, . . . , n. Hence,

(8) w2(M(A)) =
∑

1<i<j≤n

yiyj ∈ H2(M(A);Z2).

Definition 1.2 ([4], page 4). A binary square matrix A is a Bott matrix if
A = PBP−1 for a permutation matrix P and a strictly upper triangular binary
matrix B.

Our paper is a sequel of [9]. There are given some conditions of the existence
of Spin-structures.

Theorem 1.1 ([9], page 1021). Let A be a matrix of an orientable real Bott

manifold M(A).

(1) Let l ∈ N be an odd number. If there exist 1 ≤ i < j ≤ n and rows

Ai,∗, Aj,∗ such that

♯{m : ai,m = aj,m = 1} = l

and

aij = 0,

then M(A) has no Spin-structure.

(2) If aij = 1 and there exist 1 ≤ i < j ≤ n and rows

Ai,∗ = (0, . . . , 0, ai,i1 , . . . , ai,i2k , 0, . . . , 0),

Aj,∗ = (0, . . . , 0, aj,i2k+1
, . . . , aj,i2k+2l

, 0, . . . , 0)

such that ai,i1 = · · · = ai,i2k = 1, ai,m = 0 for m 6∈ {i1, . . . , i2k},
aj,i2k+1

= · · · = aj,i2k+2l
= 1, aj,r = 0 for r 6∈ {i2k+1, . . . , i2k+2l} and l,

k are odd, then M(A) has no Spin-structure.
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In this paper we extend this theorem and we formulate necessary and suf-
ficient conditions of the existence of a Spin-structure on real Bott manifolds.
Here is our main result for Bott manifolds with holonomy group Zk

2 .

Theorem 1.2. Let A be a Bott matrix. Then the real Bott manifold M(A) has
a Spin-structure if and only if for all 1 ≤ i < j ≤ n manifolds M(Aij) have a

Spin-structure, where Aij is the Z2-matrix consisting of ith and jth rows of A.

In fact our condition reduces problem of existence of Spin-structure to the
case of Bott manifold with holonomy Z2

2.

The structure of the paper is as follows. In Section 2 we prove a formula
about the second Stiefel-Whitney class of the real Bott manifolds. This is
the main tool in the proof of our main result. Section 3 has a very technical
character. In this section we shall give a complete characterization of the
existence of the Spin-structure on manifolds M(Aij), 1 ≤ i < j ≤ n.

The author is grateful to Andrzej Szczepański for his valuable remarks and
help. The author is grateful to reviewer for his suggestions.

2. Proof of the Main Theorem

We have the following lemma.

Lemma 2.1. Let A be an n× n the Bott matrix. Then,

w2(M(A)) =
∑

1≤i<j≤k

w2(M(Aij)).

Proof. From Lemma 1.1 and ([3]) we have that the second cohomology group
of H2(M(A),Z2) has a basis

B = {xixj : 1 ≤ i < j ≤ n}.
Moreover, also from Lemma 1.1 x2

j can be expressed by a linear combination
of xkxj for k < j. Note that this combination always contains an xj-term.
Hence, we get that w2(M(A)) is a sum of linear elements

w2(M(A)) =
∑

k<j

xkxj .

Each term xkxj of this sum is an element from basis B and it is equal to the
second Stiefel-Whitney class of the real Bott manifold M(Akj), so we get

w2(M(A)) =
∑

k<j

xkxj = w2(M(Akj)).

Thus, the second Stiefel-Whitney class of the real Bott manifold M(A) is
equal to the sum of second Stiefel-Whitney classes of elementary components
M(Akj), k < j. �

From proof of Lemma 2.1 we obtain the proof of Main Theorem 1.2.
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Proof of Theorem 1.2. Let us recall the manifold M has a Spin-structure if
and only if w2(M) = 0. At the beginning let us assume, that for each pair
1 ≤ i < j ≤ n, we have w2(M(Aij)) = 0. Then from Lemma 2.1 we have

w2(M(A)) =
∑

1≤i<j≤k

w2(M(Aij)) = 0,

so the real Bott manifold M(A) has a Spin-structure.
On the other hand, if the manifold M(A) admits the Spin-structure, then

0 = w2(M(A)) =
∑

1≤i<j≤k

w2(M(Aij)).

Since the second Stiefel-Whitney classes of M(Aij) are non negative so for all
1 ≤ i < j ≤ n we get

w2(M(Aij)) = 0. �

In the next section of our paper we concentrate on calculations of Spin-
structure on manifolds Aij .

3. Existence of Spin-structure on manifolds M(Aij)

From now, let A be a matrix of an orientable real Bott manifold M(A)
of dimension n with two non-zero rows. From Lemma 1.2 we have that the
number of entries 1, in each row, is an odd number and we have following three
cases:
CASE I. There are no columns with double entries 1,
CASE II. The number of columns with double entries 1 is an odd number,
CASE III. The number of columns with double entries 1 is an even number.

We give conditions for an existence of the Spin-structure on M(Aij). In the
further part of the paper we adopt the notation 0p = (0, . . . , 0

︸ ︷︷ ︸

p - times

). From the

definition, rows of number i and j correspond to generators si, sj which define
a finite index abelian subgroup H ⊂ π1(M(A)) (see [10]).

Theorem 3.1. 1. Let A be a matrix of an orientable real Bott manifold M(A)
from the above Case I. If there exist 1 ≤ i < j ≤ n such that

Ai,∗ = (0i1 , ai,i1+1, . . . , ai,i1+2k, 0i2l , 0ip),

Aj,∗ = (0i1 , 0i2k , aj,i1+2k+1, . . . , aj,i1+2k+2l, 0ip),

where ai,m = 1 for m ∈ {i1 + 1, . . . , i1 + 2k}, aj,r = 1 for r ∈ {i1 + 2k +
1, . . . , i1 + 2k + 2l}, then M(A) admits the Spin-structure if and only if either

l is an even number or l is an odd number and j /∈ {i1 + 1, . . . , i1 + 2k}.
2. Let A be a matrix of an orientable real Bott manifold M(A) from the

above Case I. If there exist 1 ≤ i < j ≤ n such that

Ai,∗ = (0i1 , 0i2k , ai,i2k+1, . . . , ai,i2k+2l, 0ip),

Aj,∗ = (0i1 , aj,i1+1, . . . , aj,i1+2k, 0i2l , 0ip),
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where aj,m = 1 for m ∈ {i1+1, . . . , i1+2k}, ai,r = 1 for r ∈ {i2k+1, . . . , i2k+
2l}, then M(A) has the Spin-structure.

Proof. 1. From (7) we have

yi1+1 = · · · = yi1+2k = xi,

yi1+2k+1 = · · · = yi1+2k+2l = xj .

Using (8) and x2
i = xi

∑n

j=1 ajixj we get

w2(M(A)) = k(2k − 1)x2
i + 4klxixj + l(2l− 1)x2

j

= k(2k − 1)x2
i + l(2l − 1)x2

j = l(2l− 1)x2
j = lx2

j .

Summing up, we have to consider the following cases
(1) if l = 2b, then w2(M(A)) = 2bx2

j = 0. Hence M(A) has a Spin-structure,
(2) if l = 2b+ 1, then

w2(M(A)) = (2b+ 1)x2
j = x2

j

=

{

0, if j /∈ {i1 + 1, . . . , i1 + 2k},M(A) has a Spin-structure,

xixj , if j ∈ {i1 + 1, . . . , i1 + 2k},M(A) has no Spin-structure.

2. From (7)
yi1+1 = · · · = yi1+2k = xj ,

yi1+2k+1 = · · · = yi1+2k+2l = xi.

Moreover, from (8) and since i1 > j > i

w2(M(A)) = k(2k − 1)x2
j + 4klxixj + l(2l− 1)x2

i

= k(2k − 1) x2
j

︸︷︷︸

=0

+l(2l− 1) x2
i

︸︷︷︸

=0

= 0.

Hence M(A) has the Spin-structure. �

Theorem 3.2. 1. Let A be a matrix of an orientable real Bott manifold M(A)
from the above Case II. If there exist 1 ≤ i < j ≤ n such that

Ai,∗ = (0i1 , ai,i1+1, . . . , ai,i1+2k, ai,i1+2k+1, . . . , ai,i1+2k+2l, 0i2m , 0ip),

Aj,∗ = (0i1 , 0i2k , aj,i1+2k+1, . . . , aj,i1+2k+2l, aj,i1+2k+2l+1, . . . , aj,i1+2k+2l+2m, 0ip),

where ai,r = 1 for r ∈ {i1 + 1, . . . , i1 + 2k + 2l}, aj,s = 1 for s ∈ {i1 + 2k +
1, . . . , i1+2k+2l+2m}, then M(A) has the Spin-structure if and only if either

l and m are numbers of the same parity or l and m are numbers of different

parity and j /∈ {i1 + 1, . . . , i1 + 2k}.
2. Let A be a matrix of an orientable real Bott manifold M(A) from the

above case II. If there exist 1 ≤ i < j ≤ n such that

Ai,∗ = (0i1 , 0i1+2k, ai,i1+2k+1, . . . , ai,i1+2k+2l, ai,i1+2k+2l+1, . . . , ai,i1+2k+2l+2m, 0ip),

Aj,∗ = (0i1 , aj,i1+1, . . . , aj,i1+2k, aj,i1+2k+1, . . . , aj,i1+2k+2l, 0i2m , 0ip),
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where aj,m = 1 for m ∈ {i1 + 1, . . . , i1 + 2k + 2l}, ai,r = 1 for r ∈ {i1 + 2k +
1, . . . , i1 + 2k + 2l+ 2m}, then M(A) has the Spin-structure.

Proof. 1. From (7) we have

yi1+1 = · · · = yi1+2k = xi,

yi1+2k+1 = · · · = yi1+2k+2l = xi + xj ,

yi1+2k+2l+1 = · · · = yi1+2k+2l+2m = xj .

From (8) and x2
i = xi

∑n

j=1 ajixj we get

w2(M(A)) = k(2k − 1)x2
i +4klxi(xi + xj)+l(2l− 1)(xi + xj)

2+m(2m− 1)x2
j

= l(2l− 1)x2
j +m(2m− 1)x2

j = (l +m)x2
j .

We have to consider the following cases:

(1) If l + m is an even number, then w2(M(A)) = 0. Hence M(A) has a
Spin-structure.

(2) If l +m is an odd number, then

w2(M(A)) = x2
j

=

{

0, if j /∈ {i1 + 1, . . . , i1 + 2k},M(A) has a Spin-structure,

xixj , if j ∈ {i1 + 1, . . . , i1 + 2k},M(A) has no Spin-structure.

2. Using (7) we get

yi1+1 = · · · = yi1+1 = xj ,

yi1+2k+1 = · · · = yi1+2k+2l = xi + xj ,

yi1+2k+2l+1 = · · · = yi1+2k+2l+2m = xi.

Moreover, from (8) and since i1 > j > i

w2(M(A)) = k(2k − 1)x2
j + l(2l− 1)x2

i + 4klxj(xi + xj) + 4kmxixj

+ 4lmxi(xi + xj) + l(2l− 1)(xi + xj)
2 +m(2m− 1)x2

i

= k(2k − 1) x2
j

︸︷︷︸

=0

+l(2l− 1) x2
i

︸︷︷︸

=0

+l(2l− 1) x2
j

︸︷︷︸

=0

+m(2m− 1) x2
i

︸︷︷︸

=0

= 0.

Hence M(A) has a Spin-structure. �

Theorem 3.3. 1. Let A be a matrix of an orientable real Bott manifold M(A)
from the above Case III. If there exist 1 ≤ i < j ≤ n such that

Ai,∗ = (0i1 , ai,i1+1, . . . , ai,i1+2k+1, ai,i1+2k+2, . . . , ai,i1+2k+2l+2, 0i2m+1 , 0ip),

Aj,∗ = (0i1 , 0i2k+1
, aj,i2k+2

, . . . , aj,i1+2k+2l+2, aj,i1+2k+2l+3, . . . , aj,i1+2k+2l+2m+3, 0ip),

where ai,r = 1 for r ∈ {i1 +1, . . . , i1 +2k+2l+2}, aj,s = 1 for s ∈ {i1 +2k+
2, . . . , i1 +2k+2l+2m+3}, then M(A) admits the Spin-structure if and only

if l and m are numbers of the same parity and j ∈ {i1 + 1, . . . , i1 + 2k + 2}.
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2. Let A be a matrix of an orientable real Bott manifold M(A) from the

above case III. If there exist 1 ≤ i < j ≤ n such that

Ai,∗ = (0,i1 , 0i2l+1
, ai,i1+2k+2, . . . , ai,i1+2k+2l+2, ai,i1+2k+2l+3, . . . , ai,i1+2k+2l+2m+3, 0ip),

Aj,∗ = (0i1 , aj,i1+1, . . . , aj,i1+2k+1, aj,i1+2k+2, . . . , aj,i1+2k+2l+2, 0i2m , 0ip),

where aj,m = 1 for m ∈ {i1 + 1, . . . , i1 + 2k + 2l + 2}, ai,r = 1 for r ∈
{i1 + 2k + 2, . . . , i1 + 2k + 2l+ 2m+ 3}, then M(A) has no Spin-structure.

Proof. 1. From (7)

yi1+1 = · · · = yi1+2k+1 = xi,

yi1+2k+2 = · · · = yi1+2k+2l+2 = xi + xj ,

yi1+2k+2l+3 = · · · = yi1+2k+2l+2m+3 = xj .

From (8) and x2
i = xi

∑n

j=1 ajixj we obtain

w2(M(A)) = k(2k + 1)x2
i +(2k + 1)(2l+ 1)xi(xi + xj)+(2k + 1)(2m+ 1)xixj

+ l(2l+ 1)(xi + xj)
2 + (2l + 1)(2m+ 1)xj(xi + xj)

+m(2m+ 1)x2
j

= (l +m+ 1)x2
j + (2l + 1)(2m+ 1)xixj

= (l +m+ 1)x2
j + xixj .

Now, if l and m are number of the same parity we have

w2(M(A)) = xixj + x2
j

=

{

xixj , if j /∈ {i1 + 1, . . . , i1 + 2k + 2}, M(A) has no Spin-structure,

0, if j ∈ {i1 + 1, . . . , i1 + 2k + 2}, M(A) has a Spin-structure.

2. From (7)

yi1+1 = · · · = yi1+2k+1 = xj ,

yi1+2k+2 = · · · = yi1+2k+2l+2 = xi + xj ,

yi1+2k+2l+3 = · · · = yi1+2k+2l+2m+3 = xi.

From (8) and since i1 > j > i we get

w2(M(A)) = k(2k + 1)x2
j +m(2m+ 1)x2

i + (2k + 1)(2l+ 1)xj(xi + xj)

+ (2k + 1)(2m+ 1)xixj + l(2l+ 1)(xi + xj)
2

+ (2l + 1)(2m+ 1)xi(xi + xj) +m(2m− 1)x2
i

= k(2k + 1) x2
j

︸︷︷︸

=0

+l(2l+ 1) (xi + xj)
2

︸ ︷︷ ︸

=0

+m(2m+ 1) x2
i

︸︷︷︸

=0

+ xj(xi + xj) + xixj + xi(xi + xj) = xixj 6= 0,

so M(A) has no Spin-structure. �

At the end we illustrate our consideration by an example.
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Example 3.1. Let

A =

















0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

















.

We have the following elementary components of A
















0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















︸ ︷︷ ︸

A12

,

















0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















︸ ︷︷ ︸

A13

,

















0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

















︸ ︷︷ ︸

A14

,

















0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















︸ ︷︷ ︸

A23

,

















0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

















︸ ︷︷ ︸

A24

,

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

















︸ ︷︷ ︸

A34

.

From Theorems 3.1, 3.2, 3.3 we get that manifolds M(A13), M(A24) have
no Spin-structure and all others elementary components have Spin-structure.
So, from Theorem 1.2 for the manifold M(A) we get

ω2(M(A)) = x1x3 + x2x4.
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[15] J. P. Rossetti and A. Szczepański, Generalized Hantzsche-Wendt flat manifolds, Rev.

Mat. Iberoamericana 21 (2005), no. 3, 1053–1070.
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