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ZERO-DENSITY ESTIMATES FOR EPSTEIN ZETA

FUNCTIONS OF CLASS NUMBERS 2 OR 3

Yoonbok Lee

Abstract. We investigate the zeros of Epstein zeta functions associated
with positive definite quadratic forms with rational coefficients in the
vertical strip σ1 < ℜs < σ2, where 1/2 < σ1 < σ2 < 1. When the
class number h of the quadratic form is bigger than 1, Voronin gave a
lower bound and Lee gave an asymptotic formula for the number of zeros.
Recently Gonek and Lee improved their results by providing a new upper
bound for the error term when h > 3. In this paper, we consider the cases
h = 2, 3 and provide an upper bound for the error term, smaller than the

one for the case h > 3.

1. Introduction

Define Q(m,n) to be a positive definite quadratic form am2 + bmn + cn2

with a, b, c ∈ Z and let its discriminant be D = b2 − 4ac < 0. Let s = σ+ it be
a complex variable. The Epstein zeta function associated with Q is defined by

E(s,Q) =
∑

m,n∈Z

(m,n) 6=(0,0)

1

Q(m,n)s

for σ > 1. It has a meromorphic continuation to C with a simple pole at
s = 1. Recently Gonek and Lee in [1] estimated N(σ1, σ2;T ), the number
of zeros of E(s,Q) in the rectangular region σ1 < σ ≤ σ2, T < t ≤ 2T for

1/2 < σ1 < σ2 < 1, when the class number h(D) of Q(
√
D) is bigger than 3,

and obtained

(1.1) N(σ1, σ2;T ) = cT +O(T exp(−b
√

log logT ))

for some b > 0, where c = c(σ1, σ2, Q) > 0. The purpose of this paper is to find
a stronger estimation of N(σ1, σ2;T ) for 1/2 < σ1 < σ2 < 1 when h(D) = 2 or
3 as follows.
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Theorem 1. Suppose that h(D) = 2 or 3. Then

N(σ1, σ2;T ) = cT +O

(

T
log logT

(logT )σ1/2

)

holds for 1/2 < σ1 < σ2 < 1, where c = c(σ1, σ2, Q) > 0.

We begin our estimation from the well-known identity

(1.2) E(s,Q) =
wD

h(D)

∑

χ

χ(aQ)L(s, χ),

where wD is the number of roots of unity in Q(
√
D), the χ-sum is over all

ideal class characters of Q(
√
D), aQ is an integral ideal corresponding to Q and

L(s, χ) is the Hecke L-function associated with χ. When h(D) = 2, let 1 and

χ1 be the ideal class characters of Q(
√
D). By (1.2) we see that

E(s,Q) =
wD

h(D)
(L(s, 1) + χ1(aQ)L(s, χ1)).

When h(D) = 3, let 1, χ2 and χ2 be the ideal class characters of Q(
√
D). Since

L(s, χ2) = L(s, χ2), by (1.2) we find that

E(s,Q) =
wD

h(D)
(L(s, 1) + 2ℜ[χ2(aQ)]L(s, χ2)).

When h(D) > 3, E(s,Q) is a linear combination of more than two inequiv-
alent Hecke L-functions. Therefore, E(s,Q) is a linear combination of two
inequivalent Hecke L-functions if and only if h(D) is two or three.

Suppose that h(D) = 2 or 3 and write

E(s,Q) = c1L1(s) + c2L2(s),

where c1, c2 6= 0 and L1(s) and L2(s) are two inequivalent Hecke L-functions.
By Littlewood’s lemma, we need to estimate the integral

∫ 2T

T

log |E(s,Q)|dt

to prove Theorem 1 for 1/2 < σ < 1. We split the integral into two pieces:

(1.3)

∫ 2T

T

log |E(s,Q)|dt =
∫ 2T

T

log |c1L2(s)|dt+
∫ 2T

T

log

∣

∣

∣

∣

L1(s)

L2(s)
+

c2

c1

∣

∣

∣

∣

dt.

The first integral on the right of (1.3) is computed using a short Dirichlet
polynomial approximation of log |L2(s)| and the second integral is estimated
using a method in [2] and lemmas in [1]. These lead to the following theorem.

Theorem 2. Suppose that h(D) = 2 or 3. Then

1

T

∫ 2T

T

log |E(s,Q)|dt = M(σ) +O

(

(log logT )2

(log T )σ

)

holds for 1/2 < σ < 1, and M(σ) has a continuous second derivative.
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Note that M(σ) is the Jensen function of E(s,Q). The assertion in Theorem
2 that M(σ) has a continuous second derivative, is proved in [3]. The proof of
Theorem 2 provides a representation for M(σ), namely

M(σ) = E[log |c1L1(σ,X) + c2L2(σ,X)|].
Here

Lj(σ,X) :=
∏

p

(

1− χj(p)X(p)

N(p)σ

)−1

is a random model of the Hecke L-functions Lj(s) = L(s, χj) for j = 1, 2, where
p is the unique rational prime dividing N(p), and the X(p) are uniformly and
independently distributed on the unit circle T.

We shall briefly explain why the estimation in Theorem 1 is better than
(1.1). When h(D) = 2 or 3, we will prove that the second integral on the right
of (1.3) is essentially

∫

B2(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
+

c2

c1

∣

∣

∣

∣

dt,

where B2(T ) is the inverse image of the union of two rectangular regions in
C under logL1(s)/L2(s) and it contains no singular points of the integrand.
(See (3.5) and (3.3) for the definition of B2(T ).) Then the above integral can
be estimated using the discrepancy lemma (Lemma 6) and the distribution of
the random model logL1(σ,X)/L2(σ,X). However, it is not possible with two
rectangular regions in the cases for bigger h(D). Indeed, Gonek and Lee in [1]
required (logT )A many rectangular regions to prove (1.1) for h(D) > 3 and
the argument was elaborate.

We introduce the lemmas we will require in Section 2. Since Theorem 1 is
a consequence of Theorem 2, we first prove Theorem 2 in Section 3 and then
Theorem 1 in Section 4.

2. Lemmas

We state lemmas from [1] without proofs.

Lemma 1 (Lemma 2.2 of [1]). Let L(s) = L(s, χ) be a Hecke L-function

attached to an ideal class character of the quadratic field Q(
√
D). For σ > 1

write

logL(s) =
∑

p,n

a(pn)

pns
,

and for Y ≥ 2 and any s let

RY (s) =
∑

pn≤Y

a(pn)

pns
.

Suppose that 1/2 < σ < 1 and B1 > 0 are fixed, and that Y = (logT )B2 with

B2 > 2(B1 + 1)/(σ − 1/2). Then

logL(s) = RY (s) +O
(

(logT )−B1
)
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for all t ∈ [T, 2T ] except on a set of measure ≪ T 1−d(σ), where d(σ) > 0.

Lemma 2 (Lemma 3.1 of [1]). Let 1/2 < σ ≤ 2 be fixed. There exists a

constant C > 0 depending at most on J such that for every positive integer k

we have

1

T

∫ 2T

T

∣

∣

∣

∣

log

∣

∣

∣

∣

∑

j≤J

cjLj(s)

∣

∣

∣

∣

∣

∣

∣

∣

2k

dt ≪ (Ck)4k.

Lemma 3 (Lemma 3.2 of [1]). Let 1/2 < σ ≤ 2 be fixed. There exist an

absolute constant C1 > 0 and a constant C2 > 0 depending on σ such that for

every positive integer k ≤ logT/(C2 log logT ), we have

1

T

∫ 2T

T

| logLj(s)|2kdt ≪ (C1k)
k

and
1

T

∫ 2T

T

∣

∣ logLi(s)− logLj(s)
∣

∣

2k
dt ≪ (C1k)

k.

Lemma 4 (Lemma 3.3 of [1]). Let 1/2 < σ ≤ 2 be fixed. For every integer

k > 0 we have

E

(∣

∣

∣

∣

log

∣

∣

∣

∣

∑

j≤J

cjLj(σ,X)

∣

∣

∣

∣

∣

∣

∣

∣

2k)

≪ (Ck)2k

and

E

(∣

∣

∣

∣

log cjLj(σ,X)

∣

∣

∣

∣

2k)

≪ (Ck)k,

where C > 0 is a constant depending at most on J .

Lemma 5. Let a be a fixed nonzero complex number and σ,A be positive con-

stants. Then we have
∫ A log log T

log |a|+(log T )−σ

∫ A log log T

−A log log T

ew

|ew+iy − a|2 dydw = Oa((log logT )
2)

as T → ∞.

Proof.
∫ A log log T

log |a|+(logT )−σ

∫ A log log T

−A log log T

ew

|ew+iy − a|2 dydw

=

∫ A log log T

log |a|+(logT )−σ

∫ A log log T

−A log log T

e−w

|1− ae−w−iy|2 dydw

=

∫ A log log T

log |a|+(logT )−σ

∫ A log log T

−A log log T

e−w

∞
∑

m,n=0

(ae−w)m(āe−w)ne−i(m−n)ydydw

= 2A|a|−1 log logT

∞
∑

m=0

1

2m+ 1
e−(2m+1)(log T )−σ

+O

(

log logT

(logT )A

)
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+O

(

∑

m 6=n

1

|m− n|(m+ n+ 1)
e−(m+n)(log T )−σ

)

.

It is now an easy exercise to prove that it is O((log logT )2). �

3. Proof of Theorem 2

We observe from (1.3) that we need to estimate the two integrals

I1 =

∫ 2T

T

log |L2(s)|dt,

I2 =

∫ 2T

T

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt

(3.1)

for 1/2 < σ < 1 and a = −c2/c1 6= 0.
We first estimate I1. Let

logL2(s) =
∑

p

∞
∑

n=1

a2(p
n)

pns

for σ > 1. Then by Lemma 1 there exists a set S1(T ) ⊂ [T, 2T ] such that

meas([T, 2T ] \ S1(T )) ≪ T 1−d(σ)

for some d(σ) > 0, and

log |L2(s)| = ℜ
[

∑

pn≤(log T )B2

a2(p
n)

pns

]

+O((log T )−B1)

for all t ∈ S1(T ) and for B2 > 2(B1 + 1)/(σ − 1/2). Thus, we have

I1 =

∫

S1(T )

ℜ
[

∑

pn≤(log T )B2

a2(p
n)

pns

]

dt+

∫

[T,2T ]\S1(T )

log |L2(s)|dt

+O(T (log T )−B1)

=

∫ 2T

T

ℜ
[

∑

pn≤(log T )B2

a2(p
n)

pns

]

dt−
∫

[T,2T ]\S1(T )

ℜ
[

∑

pn≤(log T )B2

a2(p
n)

pns

]

dt

+

∫

[T,2T ]\S1(T )

log |L2(s)|dt+O(T (logT )−B1)

= I1,1 − I1,2 + I1,3 +O(T (logT )−B1).

The first integral I1,1 is

I1,1 = ℜ
[

∑

pn≤(log T )B2

a2(p
n)

pnσ
p−2nTi − p−nTi

−in log p

]

≪ (log T )B2(1−σ).
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By the Cauchy-Schwarz inequality

|I1,2|

≤ (meas([T, 2T ] \ S1(T )))
1/2

(∫

[T,2T ]\S1(T )

∣

∣

∣

∣

ℜ
[

∑

pn≤(log T )B2

a2(p
n)

pns

]∣

∣

∣

∣

2

dt

)1/2

≤ (meas([T, 2T ] \ S1(T )))
1/2

(∫ 2T

T

∣

∣

∣

∣

∑

pn≤(log T )B2

a2(p
n)

pns

∣

∣

∣

∣

2

dt

)1/2

≪ T 1−d(σ)/2.

Similarly by the Cauchy-Schwarz inequality and Lemma 3

|I1,3| ≤ (meas([T, 2T ] \ S1(T )))
1/2

(∫ 2T

T

| log |L2(s)||2dt
)1/2

≪ T 1−d(σ)/2.

Thus,

I1 = O(T (log T )−B1)

for any fixed B1 > 0. Since

E(log |L2(σ,X)|) = E

(

ℜ
∑

p

∞
∑

n=1

a2(p
n)X(p)n

pnσ

)

= 0,

we can also write

(3.2) I1 = E(log |L2(σ,X)|) +O(T (logT )−B1).

We next estimate I2. Define

(3.3)
B1(T ) = {t ∈ [T, 2T ] : | log |L1(s)/L2(s)|| ≤ A log logT,

| argL1(s)/L2(s)| ≤ A log logT }
for a large constant A > 0. By Lemma 3

meas([T, 2T ] \B1(T ))

≤
∫

[T,2T ]\B1(T )

| log |L1(s)/L2(s)||2k + | argL1(s)/L2(s)|2k
(A log logT )2k

dt

≤
∫ 2T

T

| log |L1(s)/L2(s)||2k + | argL1(s)/L2(s)|2k
(A log logT )2k

dt

≪ T

(

Ck

A log logT

)2k

for some C > 0. Choosing k = A log logT/(Ce), we obtain

(3.4) meas([T, 2T ] \B1(T )) ≪ T (logT )−2A/(Ce).

By the Cauchy-Schwarz inequality, (3.4) and Lemma 2
∫

[T,2T ]\B1(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt
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≤ (meas([T, 2T ] \B1(T )))
1/2

(∫ 2T

T

∣

∣

∣

∣

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

∣

∣

∣

∣

2

dt

)1/2

≪ T (logT )−A/(Ce).

Thus,

I2 =

∫

B1(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt+O(T (logT )−A/(Ce)).

Next we want to remove a set of t near logarithmic singularities of the
integrand out of the integral. Define

(3.5) B2(T ) = {t ∈ B1(T ) : | log |L1(s)/L2(s)| − log |a|| ≥ (logT )−σ}.
To show that the set B1(T )\B2(T ) has small measure, we define two functions

L(s) = (ℜ logL1(s)/L2(s),ℑ logL1(s)/L2(s)),

L(σ,X) = (ℜ logL1(σ,X)/L2(σ,X),ℑ logL1(σ,X)/L2(σ,X)),

and two measures

ΨT (B) =
1

T
meas{t ∈ [T, 2T ] : L(s) ∈ B},

Ψ(B) = P(L(σ,X) ∈ B)
for Borel sets B ∈ R

2 and for a fixed 1/2 < σ < 1. Then we have the following
lemma.

Lemma 6 (Theorem 1.2 of [1]). Let 1/2 < σ < 1 be fixed. Then

sup
R

|ΨT (R)−Ψ(R)| ≪ (logT )−σ,

where R runs over all rectangular regions in R
2 (possibly unbounded) with sides

parallel to the coordinate axes.

By Lemma 6 and the absolute continuity of Ψ, we have that

(3.6)

1

T
meas(B1(T ) \B2(T )) = ΨT (R1) = Ψ(R1) +O((log T )−σ)

= O((log T )−σ),

where

R1 = (log |a| − (logT )−σ, log |a|+ (log T )−σ)× [−A log logT,A log logT ].

By Hölder’s inequality with L = log logT , (3.6) and Lemma 2, we find that
∫

B1(T )\B2(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt

≤ (meas(B1(T ) \B2(T )))
1−1/(2L )

(∫ 2T

T

∣

∣

∣

∣

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

∣

∣

∣

∣

2L

dt

)1/(2L )

≪ T
(log logT )2

(log T )σ
.
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Hence

I2 =

∫

B2(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt+O

(

T
(log logT )2

(logT )σ

)

.

We split B2(T ) into two sets

B2,1(T ) = {t ∈ B1(T ) : log |a|+ (logT )−σ ≤ log |L1(s)/L2(s)| ≤ A log logT },
B2,2(T ) = {t ∈ B1(T ) : −A log logT ≤ log |L1(s)/L2(s)| ≤ log |a| − (log T )−σ},
and define

I2,j =

∫

B2,j(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt

for j = 1, 2. Then

I2 = I2,1 + I2,2 +O

(

T
(log logT )2

(logT )σ

)

.

We now estimate I2,1. Define

R2 = [log |a|+ (logT )−σ, A log logT ]× [−A log logT,A log logT ].

Then we see that

B2,1(T ) = {t ∈ [T, 2T ] : L(s) ∈ R2}
and

1

T
I2,1 =

1

T

∫

B2,1(T )

log

∣

∣

∣

∣

L1(s)

L2(s)
− a

∣

∣

∣

∣

dt =

∫

R2

log |eu+iv − a|dΨT (u, v).

We split the integral into two

1

T
I2,1 =

∫

R2

log |eu+iv − a|dΨ(u, v) +

∫

R2

log |eu+iv − a|dDT (u, v),

where DT = ΨT − Ψ. We want to show that the last integral is small. We
divide it into three pieces as

∫

R2

log |eu+iv − a|dDT (u, v)

=

∫

R2

log |eu+iv − a| − log |eA log log T+iv − a|dDT (u, v)

+

∫

R2

log |eA log log T+iv − a| − log |eA log log T+iA log log T − a|dDT (u, v)

+

∫

R2

log |eA log log T+iA log log T − a|dDT (u, v)

= J1 + J2 + J3.

We first note that

J3 = log |eA log log T+iA log log T − a|DT (R2) ≪
log logT

(logT )σ
.
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Next we may write J2 as

J2 =

∫

R2

∫ A log log T

v

ℜ
[ −ieA log log T+iw

eA log log T+iw − a

]

dw dDT (u, v).

By changing the order of the integrals, we find that

J2 =

∫ A log log T

−A log log T

∫

R2(w)

ℜ
[ −ieA log log T+iw

eA log log T+iw − a

]

dDT (u, v) dw

=

∫ A log log T

−A log log T

DT (R2(w)) ℜ
[ −ieA log log T+iw

eA log log T+iw − a

]

dw,

where

R2(w) = [log |a|+ (log T )−σ, A log logT ]× [−A log logT,w].

By Lemma 6

J2 ≪ log logT

(logT )σ
.

Similarly, we may write J1 as

J1 = −
∫

R2

∫ A log log T

u

ℜ
[

ew+iv

ew+iv − a

]

dw dDT (u, v).

In this case we divide it into two pieces as

J1 =−
∫

R2

∫ A log log T

u

ℜ
[

ew+iv

ew+iv − a

]

−ℜ
[

ew+iA log log T

ew+iA log log T − a

]

dw dDT (u, v)

−
∫

R2

∫ A log log T

u

ℜ
[

ew+iA log log T

ew+iA log log T − a

]

dw dDT (u, v)

= J4 + J5.

We can bound J5 by the same method of bounding J2 and obtain

J5 ≪ log logT

(logT )σ
.

By changing the integrand of J4 into an integral, we have

J4 =

∫

R2

∫ A log log T

u

∫ A log log T

v

ℜ
[ −aiew+iy

(ew+iy − a)2

]

dydw dDT (u, v).

We change the order of integrals and then apply Lemma 6 to prove

J4 =

∫ A log log T

log |a|+(logT )−σ

∫ A log log T

−A log log T

DT (R2(w, y))ℜ
[ −aiew+iy

(ew+iy − a)2

]

dydw

≪ 1

(logT )σ

∫ A log log T

log |a|+(log T )−σ

∫ A log log T

−A log log T

ew

|ew+iy − a|2 dydw,

where

R2(w, y) = [log |a|+ (logT )−σ, w]× [−A log logT, y].
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By Lemma 5

J4 ≪ (log logT )2

(logT )σ
.

By combining the above inequalities, we deduce that

1

T
I2,1 =

∫

R2

log |eu+iv − a|dΨ(u, v) +O

(

(log logT )2

(logT )σ

)

.

Similarly, we can also prove that

1

T
I2,2 =

∫

R3

log |eu+iv − a|dΨ(u, v) +O

(

(log logT )2

(logT )σ

)

,

where

R3 = [−A log logT, log |a| − (logT )−σ]× [−A log logT,A log logT ].

Thus,

1

T
I2 =

∫

R2∪R3

log |eu+iv − a|dΨ(u, v) +O

(

(log logT )2

(log T )σ

)

.

To show that

1

T
I2 =

∫

R2

log |eu+iv − a|dΨ(u, v) +O

(

(log logT )2

(log T )σ

)

= E

(

log

∣

∣

∣

∣

L1(σ,X)

L2(σ,X)
− a

∣

∣

∣

∣

)

+O

(

(log logT )2

(logT )σ

)

,

(3.7)

we need to prove that the integral

J4 =

∫

R1∪(R2\R4)

log |eu+iv − a|dΨ(u, v)

is smaller than the O-term, where

R4 = R1 ∪R2 ∪R3 = [−A log logT,A log logT ]2.

Observe that

Ψ(R1) = O((log T )−σ)

by the absolute continuity of Ψ and

Ψ(R2 \ R4) = P(L(σ,X) ∈ R
2 \ R4)

≤ P(|ℜ logL1(σ,X)/L2(σ,X)| > A log logT )

+ P(|ℑ logL1(σ,X)/L2(σ,X)| > A log logT ).

By Lemma 4 we deduce that

P(|ℜ logL1(σ,X)/L2(σ,X)| > A log logT )

≤ (A log logT )−2L
E(|ℜ logL1(σ,X)/L2(σ,X)|2L )

≪ (A log logT )−2L (CL )L
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≪
(

C log logT

A2(log logT )2

)log log T

≪ (log T )−σ

for some C > 0 and L = log logT . Similarly, the same holds for

P(|ℑ logL1(σ,X)/L2(σ,X)| > A log logT ).

Hence,

(3.8) Ψ(R2 \ R4) ≪ (log T )−σ.

By Hölder’s inequality, (3.8) and Lemma 4 we deduce that

J4 =

∫

R1∪(R2\R4)

log |eu+iv − a|dΨ(u, v)

≤ (Ψ(R1 ∪ (R2 \ R4))
1−1/(2L )

(∫

R1∪(R2\R4)

| log |eu+iv − a||2L dΨ(u, v)

)1/(2L )

≤ (Ψ(R1 ∪ (R2 \ R4))
1−1/(2L )

(∫

R2

| log |eu+iv − a||2L dΨ(u, v)

)1/(2L )

= (Ψ(R1 ∪ (R2 \ R4))
1−1/(2L )

(

E

[∣

∣

∣

∣

log

∣

∣

∣

∣

L1(σ,X)

L2(σ,X)
− a

∣

∣

∣

∣

∣

∣

∣

∣

2L ])1/(2L )

≪ log logT

(logT )σ
.

Thus, this proves (3.7).
Finally, by (1.3), (3.1), (3.2) and (3.7)

1

T

∫ 2T

T

log |c1L1(s) + c2L2(s)|dt

= E(log |c1L1(σ,X) + c2L2(σ,X)|) +O

(

(log logT )2

(logT )σ

)

.

4. Proof of Theorem 1

By Littlewood’s lemma we have

∫ σ0

σ

(

∑

β>u
T≤γ≤2T

1

)

du =
1

2π

∫ 2T

T

log |E(σ + it, Q)|dt

− 1

2π

∫ 2T

T

log |E(σ0 + it, Q)|dt+O(log T ),
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where σ0 is a real number such that E(s,Q) has no zero in ℜs ≥ σ0. By
Theorem 2

∫ σ0

σ

(

∑

β>u
T≤γ≤2T

1

)

du =
T

2π
M(σ) − 1

2π

∫ 2T

T

log |E(σ0 + it, Q)|dt

+O

(

T
(log logT )2

(logT )σ

)

.

Let h > 0. Differencing this at σ and σ+ h and then dividing by h, we deduce
that

1

h

∫ σ+h

σ

(

∑

β>u
T≤γ≤2T

1

)

du =
T

2π

M(σ)−M(σ + h)

h
+O

(

T

h

(log logT )2

(logT )σ

)

.

Since M(σ) is twice differentiable, for a sufficiently small h > 0,

1

h

∫ σ+h

σ

(

∑

β>u
T≤γ≤2T

1

)

du = − T

2π
M′(σ) +O

(

hT +
T

h

(log logT )2

(logT )σ

)

.

The integrand is a decreasing function of u, so

∑

β>σ+h
T≤γ≤2T

1 ≤ − T

2π
M′(σ) +O

(

hT +
T

h

(log log T )2

(logT )σ

)

≤
∑

β>σ
T≤γ≤2T

1.

In the left inequality we replace σ by σ−h and use M′(σ−h) = M′(σ)+O(h).
Then we find that

∑

β>σ
T≤γ≤2T

1 = − T

2π
M′(σ) +O

(

hT +
T

h

(log logT )2

(logT )σ

)

.

Taking h = (log T )−σ/2 log log T , we obtain

∑

β>σ
T≤γ≤2T

1 = − T

2π
M′(σ) +O

(

T
log logT

(logT )σ/2

)

.

Therefore,

N(σ1, σ2;T ) =
T

2π
(M′(σ2)−M′(σ1)) +O

(

T
log logT

(log T )σ1/2

)

holds for 1/2 < σ1 < σ2 < 1.

Acknowledgement. This work was supported by the Incheon National Uni-
versity Research Grant in 2015.



ZERO-DENSITY ESTIMATES FOR EPSTEIN ZETA FUNCTIONS 491

References

[1] S. Gonek and Y. Lee, Zero-density estimates of Epstein zeta functions, Quart. J. Math.
doi:10.1093/qmath/haw041.

[2] Y. Lamzouri, S. Lester, and M. Radziwi l l, Discrepancy bounds for the distribution of the

Riemann zeta-function and applications, http://arxiv.org/abs/1402.6682.
[3] Y. Lee, On the zeros of Epstein zeta functions, Forum Math. 26 (2014), no. 6, 1807–1836.

Yoonbok Lee

Research Institute of Natural Sciences

Department of Mathematics

Incheon National University

Incheon 22012, Korea

E-mail address: leeyb@inu.ac.kr, leeyb131@gmail.com




