ZERO-DENSITY ESTIMATES FOR EPSTEIN ZETA FUNCTIONS OF CLASS NUMBERS 2 OR 3

Yoonbok Lee

Abstract

We investigate the zeros of Epstein zeta functions associated with positive definite quadratic forms with rational coefficients in the vertical strip $\sigma_{1}<\Re s<\sigma_{2}$, where $1 / 2<\sigma_{1}<\sigma_{2}<1$. When the class number h of the quadratic form is bigger than 1, Voronin gave a lower bound and Lee gave an asymptotic formula for the number of zeros. Recently Gonek and Lee improved their results by providing a new upper bound for the error term when $h>3$. In this paper, we consider the cases $h=2,3$ and provide an upper bound for the error term, smaller than the one for the case $h>3$.

1. Introduction

Define $Q(m, n)$ to be a positive definite quadratic form $a m^{2}+b m n+c n^{2}$ with $a, b, c \in \mathbb{Z}$ and let its discriminant be $D=b^{2}-4 a c<0$. Let $s=\sigma+i t$ be a complex variable. The Epstein zeta function associated with Q is defined by

$$
E(s, Q)=\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{Q(m, n)^{s}}
$$

for $\sigma>1$. It has a meromorphic continuation to \mathbb{C} with a simple pole at $s=1$. Recently Gonek and Lee in [1] estimated $N\left(\sigma_{1}, \sigma_{2} ; T\right)$, the number of zeros of $E(s, Q)$ in the rectangular region $\sigma_{1}<\sigma \leq \sigma_{2}, T<t \leq 2 T$ for $1 / 2<\sigma_{1}<\sigma_{2}<1$, when the class number $h(D)$ of $\mathbb{Q}(\sqrt{D})$ is bigger than 3 , and obtained

$$
\begin{equation*}
N\left(\sigma_{1}, \sigma_{2} ; T\right)=c T+O(T \exp (-b \sqrt{\log \log T})) \tag{1.1}
\end{equation*}
$$

for some $b>0$, where $c=c\left(\sigma_{1}, \sigma_{2}, Q\right)>0$. The purpose of this paper is to find a stronger estimation of $N\left(\sigma_{1}, \sigma_{2} ; T\right)$ for $1 / 2<\sigma_{1}<\sigma_{2}<1$ when $h(D)=2$ or 3 as follows.

Received January 30, 2016; Revised July 19, 2016.
2010 Mathematics Subject Classification. 11M26, 11M41.
Key words and phrases. Epstein zeta function, zero density, Hecke L-function.

Theorem 1. Suppose that $h(D)=2$ or 3 . Then

$$
N\left(\sigma_{1}, \sigma_{2} ; T\right)=c T+O\left(T \frac{\log \log T}{(\log T)^{\sigma_{1} / 2}}\right)
$$

holds for $1 / 2<\sigma_{1}<\sigma_{2}<1$, where $c=c\left(\sigma_{1}, \sigma_{2}, Q\right)>0$.
We begin our estimation from the well-known identity

$$
\begin{equation*}
E(s, Q)=\frac{w_{D}}{h(D)} \sum_{\chi} \overline{\chi\left(\mathfrak{a}_{Q}\right)} L(s, \chi) \tag{1.2}
\end{equation*}
$$

where w_{D} is the number of roots of unity in $\mathbb{Q}(\sqrt{D})$, the χ-sum is over all ideal class characters of $\mathbb{Q}(\sqrt{D}), \mathfrak{a}_{Q}$ is an integral ideal corresponding to Q and $L(s, \chi)$ is the Hecke L-function associated with χ. When $h(D)=2$, let 1 and χ_{1} be the ideal class characters of $\mathbb{Q}(\sqrt{D})$. By (1.2) we see that

$$
E(s, Q)=\frac{w_{D}}{h(D)}\left(L(s, 1)+\overline{\chi_{1}\left(\mathfrak{a}_{Q}\right)} L\left(s, \chi_{1}\right)\right)
$$

When $h(D)=3$, let $1, \chi_{2}$ and $\overline{\chi_{2}}$ be the ideal class characters of $\mathbb{Q}(\sqrt{D})$. Since $L\left(s, \chi_{2}\right)=L\left(s, \overline{\chi_{2}}\right)$, by (1.2) we find that

$$
E(s, Q)=\frac{w_{D}}{h(D)}\left(L(s, 1)+2 \Re\left[\chi_{2}\left(\mathfrak{a}_{Q}\right)\right] L\left(s, \chi_{2}\right)\right)
$$

When $h(D)>3, E(s, Q)$ is a linear combination of more than two inequivalent Hecke L-functions. Therefore, $E(s, Q)$ is a linear combination of two inequivalent Hecke L-functions if and only if $h(D)$ is two or three.

Suppose that $h(D)=2$ or 3 and write

$$
E(s, Q)=c_{1} L_{1}(s)+c_{2} L_{2}(s),
$$

where $c_{1}, c_{2} \neq 0$ and $L_{1}(s)$ and $L_{2}(s)$ are two inequivalent Hecke L-functions. By Littlewood's lemma, we need to estimate the integral

$$
\int_{T}^{2 T} \log |E(s, Q)| d t
$$

to prove Theorem 1 for $1 / 2<\sigma<1$. We split the integral into two pieces:

$$
\begin{equation*}
\int_{T}^{2 T} \log |E(s, Q)| d t=\int_{T}^{2 T} \log \left|c_{1} L_{2}(s)\right| d t+\int_{T}^{2 T} \log \left|\frac{L_{1}(s)}{L_{2}(s)}+\frac{c_{2}}{c_{1}}\right| d t \tag{1.3}
\end{equation*}
$$

The first integral on the right of (1.3) is computed using a short Dirichlet polynomial approximation of $\log \left|L_{2}(s)\right|$ and the second integral is estimated using a method in [2] and lemmas in [1]. These lead to the following theorem.

Theorem 2. Suppose that $h(D)=2$ or 3 . Then

$$
\frac{1}{T} \int_{T}^{2 T} \log |E(s, Q)| d t=\mathcal{M}(\sigma)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

holds for $1 / 2<\sigma<1$, and $\mathcal{M}(\sigma)$ has a continuous second derivative.

Note that $\mathcal{M}(\sigma)$ is the Jensen function of $E(s, Q)$. The assertion in Theorem 2 that $\mathcal{M}(\sigma)$ has a continuous second derivative, is proved in [3]. The proof of Theorem 2 provides a representation for $\mathcal{M}(\sigma)$, namely

$$
\mathcal{M}(\sigma)=\mathbb{E}\left[\log \left|c_{1} L_{1}(\sigma, X)+c_{2} L_{2}(\sigma, X)\right|\right]
$$

Here

$$
L_{j}(\sigma, X):=\prod_{\mathfrak{p}}\left(1-\frac{\chi_{j}(\mathfrak{p}) X(p)}{\mathfrak{N}(\mathfrak{p})^{\sigma}}\right)^{-1}
$$

is a random model of the Hecke L-functions $L_{j}(s)=L\left(s, \chi_{j}\right)$ for $j=1,2$, where p is the unique rational prime dividing $\mathfrak{N}(\mathfrak{p})$, and the $X(p)$ are uniformly and independently distributed on the unit circle \mathbb{T}.

We shall briefly explain why the estimation in Theorem 1 is better than (1.1). When $h(D)=2$ or 3 , we will prove that the second integral on the right of (1.3) is essentially

$$
\int_{B_{2}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}+\frac{c_{2}}{c_{1}}\right| d t
$$

where $B_{2}(T)$ is the inverse image of the union of two rectangular regions in \mathbb{C} under $\log L_{1}(s) / L_{2}(s)$ and it contains no singular points of the integrand. (See (3.5) and (3.3) for the definition of $B_{2}(T)$.) Then the above integral can be estimated using the discrepancy lemma (Lemma 6) and the distribution of the random model $\log L_{1}(\sigma, X) / L_{2}(\sigma, X)$. However, it is not possible with two rectangular regions in the cases for bigger $h(D)$. Indeed, Gonek and Lee in [1] required $(\log T)^{A}$ many rectangular regions to prove (1.1) for $h(D)>3$ and the argument was elaborate.

We introduce the lemmas we will require in Section 2. Since Theorem 1 is a consequence of Theorem 2, we first prove Theorem 2 in Section 3 and then Theorem 1 in Section 4.

2. Lemmas

We state lemmas from [1] without proofs.
Lemma 1 (Lemma 2.2 of [1]). Let $L(s)=L(s, \chi)$ be a Hecke L-function attached to an ideal class character of the quadratic field $\mathbb{Q}(\sqrt{D})$. For $\sigma>1$ write

$$
\log L(s)=\sum_{p, n} \frac{a\left(p^{n}\right)}{p^{n s}}
$$

and for $Y \geq 2$ and any s let

$$
R_{Y}(s)=\sum_{p^{n} \leq Y} \frac{a\left(p^{n}\right)}{p^{n s}}
$$

Suppose that $1 / 2<\sigma<1$ and $B_{1}>0$ are fixed, and that $Y=(\log T)^{B_{2}}$ with $B_{2}>2\left(B_{1}+1\right) /(\sigma-1 / 2)$. Then

$$
\log L(s)=R_{Y}(s)+O\left((\log T)^{-B_{1}}\right)
$$

for all $t \in[T, 2 T]$ except on a set of measure $\ll T^{1-d(\sigma)}$, where $d(\sigma)>0$.
Lemma 2 (Lemma 3.1 of [1]). Let $1 / 2<\sigma \leq 2$ be fixed. There exists a constant $C>0$ depending at most on J such that for every positive integer k we have

$$
\frac{1}{T} \int_{T}^{2 T}|\log | \sum_{j \leq J} c_{j} L_{j}(s)| |^{2 k} d t \ll(C k)^{4 k}
$$

Lemma 3 (Lemma 3.2 of [1]). Let $1 / 2<\sigma \leq 2$ be fixed. There exist an absolute constant $C_{1}>0$ and a constant $C_{2}>0$ depending on σ such that for every positive integer $k \leq \log T /\left(C_{2} \log \log T\right)$, we have

$$
\frac{1}{T} \int_{T}^{2 T}\left|\log L_{j}(s)\right|^{2 k} d t \ll\left(C_{1} k\right)^{k}
$$

and

$$
\frac{1}{T} \int_{T}^{2 T}\left|\log L_{i}(s)-\log L_{j}(s)\right|^{2 k} d t \ll\left(C_{1} k\right)^{k}
$$

Lemma 4 (Lemma 3.3 of [1]). Let $1 / 2<\sigma \leq 2$ be fixed. For every integer $k>0$ we have

$$
\mathbb{E}\left(|\log | \sum_{j \leq J} c_{j} L_{j}(\sigma, X)| |^{2 k}\right) \ll(C k)^{2 k}
$$

and

$$
\mathbb{E}\left(\left|\log c_{j} L_{j}(\sigma, X)\right|^{2 k}\right) \ll(C k)^{k}
$$

where $C>0$ is a constant depending at most on J.
Lemma 5. Let a be a fixed nonzero complex number and σ, A be positive constants. Then we have

$$
\int_{\log |a|+(\log T)^{-\sigma}}^{A \log \log T} \int_{-A \log \log T}^{A \log \log T} \frac{e^{w}}{\left|e^{w+i y}-a\right|^{2}} d y d w=O_{a}\left((\log \log T)^{2}\right)
$$

as $T \rightarrow \infty$.
Proof.

$$
\begin{aligned}
& \int_{\log |a|+(\log T)^{-\sigma}}^{A \log \log T} \int_{-A \log \log T}^{A \log \log T} \frac{e^{w}}{\left|e^{w+i y}-a\right|^{2}} d y d w \\
= & \int_{\log |a|+(\log T)^{-\sigma}}^{A \log \log T} \int_{-A \log \log T}^{A \log \log T} \frac{e^{-w}}{\mid 1-a e^{-w-\left.i y\right|^{2}} d y d w} \\
= & \int_{\log |a|+(\log T)^{-\sigma}}^{A \log \log T} \int_{-A \log \log T}^{A \log \log T} e^{-w} \sum_{m, n=0}^{\infty}\left(a e^{-w}\right)^{m}\left(\bar{a} e^{-w}\right)^{n} e^{-i(m-n) y} d y d w \\
= & 2 A|a|^{-1} \log \log T \sum_{m=0}^{\infty} \frac{1}{2 m+1} e^{-(2 m+1)(\log T)^{-\sigma}}+O\left(\frac{\log \log T}{(\log T)^{A}}\right)
\end{aligned}
$$

$$
+O\left(\sum_{m \neq n} \frac{1}{|m-n|(m+n+1)} e^{-(m+n)(\log T)^{-\sigma}}\right)
$$

It is now an easy exercise to prove that it is $O\left((\log \log T)^{2}\right)$.

3. Proof of Theorem 2

We observe from (1.3) that we need to estimate the two integrals

$$
\begin{align*}
& I_{1}=\int_{T}^{2 T} \log \left|L_{2}(s)\right| d t, \\
& I_{2}=\int_{T}^{2 T} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t \tag{3.1}
\end{align*}
$$

for $1 / 2<\sigma<1$ and $a=-c_{2} / c_{1} \neq 0$.
We first estimate I_{1}. Let

$$
\log L_{2}(s)=\sum_{p} \sum_{n=1}^{\infty} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}
$$

for $\sigma>1$. Then by Lemma 1 there exists a set $S_{1}(T) \subset[T, 2 T]$ such that

$$
\operatorname{meas}\left([T, 2 T] \backslash S_{1}(T)\right) \ll T^{1-d(\sigma)}
$$

for some $d(\sigma)>0$, and

$$
\log \left|L_{2}(s)\right|=\Re\left[\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}\right]+O\left((\log T)^{-B_{1}}\right)
$$

for all $t \in S_{1}(T)$ and for $B_{2}>2\left(B_{1}+1\right) /(\sigma-1 / 2)$. Thus, we have

$$
\begin{aligned}
I_{1}= & \int_{S_{1}(T)} \Re\left[\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}\right] d t+\int_{[T, 2 T] \backslash S_{1}(T)} \log \left|L_{2}(s)\right| d t \\
& +O\left(T(\log T)^{-B_{1}}\right) \\
= & \int_{T}^{2 T} \Re\left[\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}\right] d t-\int_{[T, 2 T] \backslash S_{1}(T)} \Re\left[\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}\right] d t \\
& +\int_{[T, 2 T] \backslash S_{1}(T)} \log \left|L_{2}(s)\right| d t+O\left(T(\log T)^{-B_{1}}\right) \\
= & I_{1,1}-I_{1,2}+I_{1,3}+O\left(T(\log T)^{-B_{1}}\right) .
\end{aligned}
$$

The first integral $I_{1,1}$ is

$$
I_{1,1}=\Re\left[\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n \sigma}} \frac{p^{-2 n T i}-p^{-n T i}}{-i n \log p}\right] \ll(\log T)^{B_{2}(1-\sigma)} .
$$

By the Cauchy-Schwarz inequality

$$
\begin{aligned}
&\left|I_{1,2}\right| \\
& \leq\left(\operatorname{meas}\left([T, 2 T] \backslash S_{1}(T)\right)\right)^{1 / 2}\left(\int_{[T, 2 T] \backslash S_{1}(T)}\left|\Re\left[\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}\right]\right|^{2} d t\right)^{1 / 2} \\
& \leq\left(\operatorname{meas}\left([T, 2 T] \backslash S_{1}(T)\right)\right)^{1 / 2}\left(\int_{T}^{2 T}\left|\sum_{p^{n} \leq(\log T)^{B_{2}}} \frac{a_{2}\left(p^{n}\right)}{p^{n s}}\right|^{2} d t\right)^{1 / 2} \\
& \ll T^{1-d(\sigma) / 2} .
\end{aligned}
$$

Similarly by the Cauchy-Schwarz inequality and Lemma 3

$$
\left|I_{1,3}\right| \leq\left(\operatorname{meas}\left([T, 2 T] \backslash S_{1}(T)\right)\right)^{1 / 2}\left(\int_{T}^{2 T}|\log | L_{2}(s) \|^{2} d t\right)^{1 / 2} \ll T^{1-d(\sigma) / 2}
$$

Thus,

$$
I_{1}=O\left(T(\log T)^{-B_{1}}\right)
$$

for any fixed $B_{1}>0$. Since

$$
\mathbb{E}\left(\log \left|L_{2}(\sigma, X)\right|\right)=\mathbb{E}\left(\Re \sum_{p} \sum_{n=1}^{\infty} \frac{a_{2}\left(p^{n}\right) X(p)^{n}}{p^{n \sigma}}\right)=0
$$

we can also write

$$
\begin{equation*}
I_{1}=\mathbb{E}\left(\log \left|L_{2}(\sigma, X)\right|\right)+O\left(T(\log T)^{-B_{1}}\right) \tag{3.2}
\end{equation*}
$$

We next estimate I_{2}. Define

$$
\begin{align*}
B_{1}(T)=\{t \in[T, 2 T]: & |\log | L_{1}(s) / L_{2}(s)| | \leq A \log \log T \tag{3.3}\\
& \left.\left|\arg L_{1}(s) / L_{2}(s)\right| \leq A \log \log T\right\}
\end{align*}
$$

for a large constant $A>0$. By Lemma 3

$$
\begin{aligned}
& \operatorname{meas}\left([T, 2 T] \backslash B_{1}(T)\right) \\
\leq & \int_{[T, 2 T] \backslash B_{1}(T)} \frac{|\log | L_{1}(s) /\left.L_{2}(s)\right|^{2 k}+\left|\arg L_{1}(s) / L_{2}(s)\right|^{2 k}}{(A \log \log T)^{2 k}} d t \\
\leq & \int_{T}^{2 T} \frac{|\log | L_{1}(s) /\left.L_{2}(s)\right|^{2 k}+\left|\arg L_{1}(s) / L_{2}(s)\right|^{2 k}}{(A \log \log T)^{2 k}} d t \\
< & T\left(\frac{C k}{A \log \log T}\right)^{2 k}
\end{aligned}
$$

for some $C>0$. Choosing $k=A \log \log T /(C e)$, we obtain

$$
\begin{equation*}
\operatorname{meas}\left([T, 2 T] \backslash B_{1}(T)\right) \ll T(\log T)^{-2 A /(C e)} \tag{3.4}
\end{equation*}
$$

By the Cauchy-Schwarz inequality, (3.4) and Lemma 2

$$
\int_{[T, 2 T] \backslash B_{1}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t
$$

$$
\begin{aligned}
& \leq\left(\operatorname{meas}\left([T, 2 T] \backslash B_{1}(T)\right)\right)^{1 / 2}\left(\int_{T}^{2 T}|\log | \frac{L_{1}(s)}{L_{2}(s)}-a \|^{2} d t\right)^{1 / 2} \\
& \ll T(\log T)^{-A /(C e)}
\end{aligned}
$$

Thus,

$$
I_{2}=\int_{B_{1}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t+O\left(T(\log T)^{-A /(C e)}\right)
$$

Next we want to remove a set of t near logarithmic singularities of the integrand out of the integral. Define

$$
\begin{equation*}
B_{2}(T)=\left\{t \in B_{1}(T):|\log | L_{1}(s) / L_{2}(s)|-\log | a| | \geq(\log T)^{-\sigma}\right\} \tag{3.5}
\end{equation*}
$$

To show that the set $B_{1}(T) \backslash B_{2}(T)$ has small measure, we define two functions

$$
\begin{aligned}
\mathbb{L}(s) & =\left(\Re \log L_{1}(s) / L_{2}(s), \Im \log L_{1}(s) / L_{2}(s)\right), \\
\mathbb{L}(\sigma, X) & =\left(\Re \log L_{1}(\sigma, X) / L_{2}(\sigma, X), \Im \log L_{1}(\sigma, X) / L_{2}(\sigma, X)\right),
\end{aligned}
$$

and two measures

$$
\begin{aligned}
\Psi_{T}(\mathcal{B}) & =\frac{1}{T} \operatorname{meas}\{t \in[T, 2 T]: \mathbb{L}(s) \in \mathcal{B}\} \\
\Psi(\mathcal{B}) & =\mathbb{P}(\mathbb{L}(\sigma, X) \in \mathcal{B})
\end{aligned}
$$

for Borel sets $\mathcal{B} \in \mathbb{R}^{2}$ and for a fixed $1 / 2<\sigma<1$. Then we have the following lemma.
Lemma 6 (Theorem 1.2 of [1]). Let $1 / 2<\sigma<1$ be fixed. Then

$$
\sup _{\mathcal{R}}\left|\Psi_{T}(\mathcal{R})-\Psi(\mathcal{R})\right| \ll(\log T)^{-\sigma}
$$

where \mathcal{R} runs over all rectangular regions in \mathbb{R}^{2} (possibly unbounded) with sides parallel to the coordinate axes.

By Lemma 6 and the absolute continuity of Ψ, we have that

$$
\begin{align*}
\frac{1}{T} \operatorname{meas}\left(B_{1}(T) \backslash B_{2}(T)\right) & =\Psi_{T}\left(\mathcal{R}_{1}\right)=\Psi\left(\mathcal{R}_{1}\right)+O\left((\log T)^{-\sigma}\right) \tag{3.6}\\
& =O\left((\log T)^{-\sigma}\right)
\end{align*}
$$

where
$\mathcal{R}_{1}=\left(\log |a|-(\log T)^{-\sigma}, \log |a|+(\log T)^{-\sigma}\right) \times[-A \log \log T, A \log \log T]$.
By Hölder's inequality with $\mathscr{L}=\log \log T$, (3.6) and Lemma 2, we find that

$$
\begin{aligned}
& \int_{B_{1}(T) \backslash B_{2}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t \\
\leq & \left(\operatorname{meas}\left(B_{1}(T) \backslash B_{2}(T)\right)\right)^{1-1 /(2 \mathscr{L})}\left(\int_{T}^{2 T}|\log | \frac{L_{1}(s)}{L_{2}(s)}-\left.a\right|^{2 \mathscr{L}} d t\right)^{1 /(2 \mathscr{L})} \\
< & T \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}
\end{aligned}
$$

Hence

$$
I_{2}=\int_{B_{2}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t+O\left(T \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

We split $B_{2}(T)$ into two sets
$B_{2,1}(T)=\left\{t \in B_{1}(T): \log |a|+(\log T)^{-\sigma} \leq \log \left|L_{1}(s) / L_{2}(s)\right| \leq A \log \log T\right\}$,
$B_{2,2}(T)=\left\{t \in B_{1}(T):-A \log \log T \leq \log \left|L_{1}(s) / L_{2}(s)\right| \leq \log |a|-(\log T)^{-\sigma}\right\}$,
and define

$$
I_{2, j}=\int_{B_{2, j}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t
$$

for $j=1,2$. Then

$$
I_{2}=I_{2,1}+I_{2,2}+O\left(T \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

We now estimate $I_{2,1}$. Define

$$
\mathcal{R}_{2}=\left[\log |a|+(\log T)^{-\sigma}, A \log \log T\right] \times[-A \log \log T, A \log \log T]
$$

Then we see that

$$
B_{2,1}(T)=\left\{t \in[T, 2 T]: \mathbb{L}(s) \in \mathcal{R}_{2}\right\}
$$

and

$$
\frac{1}{T} I_{2,1}=\frac{1}{T} \int_{B_{2,1}(T)} \log \left|\frac{L_{1}(s)}{L_{2}(s)}-a\right| d t=\int_{\mathcal{R}_{2}} \log \left|e^{u+i v}-a\right| d \Psi_{T}(u, v)
$$

We split the integral into two

$$
\frac{1}{T} I_{2,1}=\int_{\mathcal{R}_{2}} \log \left|e^{u+i v}-a\right| d \Psi(u, v)+\int_{\mathcal{R}_{2}} \log \left|e^{u+i v}-a\right| d D_{T}(u, v)
$$

where $D_{T}=\Psi_{T}-\Psi$. We want to show that the last integral is small. We divide it into three pieces as

$$
\begin{aligned}
& \int_{\mathcal{R}_{2}} \log \left|e^{u+i v}-a\right| d D_{T}(u, v) \\
= & \int_{\mathcal{R}_{2}} \log \left|e^{u+i v}-a\right|-\log \left|e^{A \log \log T+i v}-a\right| d D_{T}(u, v) \\
& +\int_{\mathcal{R}_{2}} \log \left|e^{A \log \log T+i v}-a\right|-\log \left|e^{A \log \log T+i A \log \log T}-a\right| d D_{T}(u, v) \\
& +\int_{\mathcal{R}_{2}} \log \left|e^{A \log \log T+i A \log \log T}-a\right| d D_{T}(u, v) \\
= & J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

We first note that

$$
J_{3}=\log \left|e^{A \log \log T+i A \log \log T}-a\right| D_{T}\left(\mathcal{R}_{2}\right) \ll \frac{\log \log T}{(\log T)^{\sigma}} .
$$

Next we may write J_{2} as

$$
J_{2}=\int_{\mathcal{R}_{2}} \int_{v}^{A \log \log T} \Re\left[\frac{-i e^{A \log \log T+i w}}{e^{A \log \log T+i w}-a}\right] d w d D_{T}(u, v)
$$

By changing the order of the integrals, we find that

$$
\begin{aligned}
J_{2} & =\int_{-A \log \log T}^{A \log \log T} \int_{\mathcal{R}_{2}(w)} \Re\left[\frac{-i e^{A \log \log T+i w}}{e^{A \log \log T+i w}-a}\right] d D_{T}(u, v) d w \\
& =\int_{-A \log \log T}^{A \log \log T} D_{T}\left(\mathcal{R}_{2}(w)\right) \Re\left[\frac{-i e^{A \log \log T+i w}}{e^{A \log \log T+i w}-a}\right] d w
\end{aligned}
$$

where

$$
\mathcal{R}_{2}(w)=\left[\log |a|+(\log T)^{-\sigma}, A \log \log T\right] \times[-A \log \log T, w]
$$

By Lemma 6

$$
J_{2} \ll \frac{\log \log T}{(\log T)^{\sigma}}
$$

Similarly, we may write J_{1} as

$$
J_{1}=-\int_{\mathcal{R}_{2}} \int_{u}^{A \log \log T} \Re\left[\frac{e^{w+i v}}{e^{w+i v}-a}\right] d w d D_{T}(u, v)
$$

In this case we divide it into two pieces as

$$
\begin{aligned}
J_{1}= & -\int_{\mathcal{R}_{2}} \int_{u}^{A \log \log T} \Re\left[\frac{e^{w+i v}}{e^{w+i v}-a}\right]-\Re\left[\frac{e^{w+i A \log \log T}}{e^{w+i A \log \log T}-a}\right] d w d D_{T}(u, v) \\
& -\int_{\mathcal{R}_{2}} \int_{u}^{A \log \log T} \Re\left[\frac{e^{w+i A \log \log T}}{e^{w+i A \log \log T}-a}\right] d w d D_{T}(u, v) \\
= & J_{4}+J_{5}
\end{aligned}
$$

We can bound J_{5} by the same method of bounding J_{2} and obtain

$$
J_{5} \ll \frac{\log \log T}{(\log T)^{\sigma}}
$$

By changing the integrand of J_{4} into an integral, we have

$$
J_{4}=\int_{\mathcal{R}_{2}} \int_{u}^{A \log \log T} \int_{v}^{A \log \log T} \Re\left[\frac{-a i e^{w+i y}}{\left(e^{w+i y}-a\right)^{2}}\right] d y d w d D_{T}(u, v)
$$

We change the order of integrals and then apply Lemma 6 to prove

$$
\begin{aligned}
J_{4} & =\int_{\log |a|+(\log T)^{-\sigma}}^{A \log \log T} \quad \int_{-A \log \log T}^{A \log \log T} D_{T}\left(\mathcal{R}_{2}(w, y)\right) \Re\left[\frac{-a i e^{w+i y}}{\left(e^{w+i y}-a\right)^{2}}\right] d y d w \\
& \ll \frac{1}{(\log T)^{\sigma}} \int_{\log |a|+(\log T)^{-\sigma}}^{A \log \log T} \int_{-A \log \log T}^{A \log \log T} \frac{e^{w}}{e^{w+i y}-\left.a\right|^{2}} d y d w
\end{aligned}
$$

where

$$
\mathcal{R}_{2}(w, y)=\left[\log |a|+(\log T)^{-\sigma}, w\right] \times[-A \log \log T, y]
$$

By Lemma 5

$$
J_{4} \ll \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}
$$

By combining the above inequalities, we deduce that

$$
\frac{1}{T} I_{2,1}=\int_{\mathcal{R}_{2}} \log \left|e^{u+i v}-a\right| d \Psi(u, v)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

Similarly, we can also prove that

$$
\frac{1}{T} I_{2,2}=\int_{\mathcal{R}_{3}} \log \left|e^{u+i v}-a\right| d \Psi(u, v)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

where

$$
\mathcal{R}_{3}=\left[-A \log \log T, \log |a|-(\log T)^{-\sigma}\right] \times[-A \log \log T, A \log \log T] .
$$

Thus,

$$
\frac{1}{T} I_{2}=\int_{\mathcal{R}_{2} \cup \mathcal{R}_{3}} \log \left|e^{u+i v}-a\right| d \Psi(u, v)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

To show that

$$
\begin{align*}
\frac{1}{T} I_{2} & =\int_{\mathbb{R}^{2}} \log \left|e^{u+i v}-a\right| d \Psi(u, v)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right) \\
& =\mathbb{E}\left(\log \left|\frac{L_{1}(\sigma, X)}{L_{2}(\sigma, X)}-a\right|\right)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right) \tag{3.7}
\end{align*}
$$

we need to prove that the integral

$$
J_{4}=\int_{\mathcal{R}_{1} \cup\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)} \log \left|e^{u+i v}-a\right| d \Psi(u, v)
$$

is smaller than the O-term, where

$$
\mathcal{R}_{4}=\mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3}=[-A \log \log T, A \log \log T]^{2}
$$

Observe that

$$
\Psi\left(\mathcal{R}_{1}\right)=O\left((\log T)^{-\sigma}\right)
$$

by the absolute continuity of Ψ and

$$
\begin{aligned}
\Psi\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)= & \mathbb{P}\left(\mathbb{L}(\sigma, X) \in \mathbb{R}^{2} \backslash \mathcal{R}_{4}\right) \\
\leq & \mathbb{P}\left(\left|\Re \log L_{1}(\sigma, X) / L_{2}(\sigma, X)\right|>A \log \log T\right) \\
& +\mathbb{P}\left(\left|\Im \log L_{1}(\sigma, X) / L_{2}(\sigma, X)\right|>A \log \log T\right) .
\end{aligned}
$$

By Lemma 4 we deduce that

$$
\begin{aligned}
& \mathbb{P}\left(\left|\Re \log L_{1}(\sigma, X) / L_{2}(\sigma, X)\right|>A \log \log T\right) \\
\leq & (A \log \log T)^{-2 \mathscr{L}} \mathbb{E}\left(\left|\Re \log L_{1}(\sigma, X) / L_{2}(\sigma, X)\right|^{2 \mathscr{L}}\right) \\
\ll & (A \log \log T)^{-2 \mathscr{L}}(C \mathscr{L})^{\mathscr{L}}
\end{aligned}
$$

$$
\begin{aligned}
& \ll\left(\frac{C \log \log T}{A^{2}(\log \log T)^{2}}\right)^{\log \log T} \\
& \ll(\log T)^{-\sigma}
\end{aligned}
$$

for some $C>0$ and $\mathscr{L}=\log \log T$. Similarly, the same holds for

$$
\mathbb{P}\left(\left|\Im \log L_{1}(\sigma, X) / L_{2}(\sigma, X)\right|>A \log \log T\right)
$$

Hence,

$$
\begin{equation*}
\Psi\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right) \ll(\log T)^{-\sigma} \tag{3.8}
\end{equation*}
$$

By Hölder's inequality, (3.8) and Lemma 4 we deduce that

$$
\begin{aligned}
J_{4} & =\int_{\mathcal{R}_{1} \cup\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)} \log \left|e^{u+i v}-a\right| d \Psi(u, v) \\
& \leq\left(\Psi\left(\mathcal{R}_{1} \cup\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)\right)^{1-1 /(2 \mathscr{L})}\left(\int_{\mathcal{R}_{1} \cup\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)}|\log | e^{u+i v}-\left.a\right|^{2 \mathscr{L}} d \Psi(u, v)\right)^{1 /(2 \mathscr{L})}\right. \\
& \leq\left(\Psi\left(\mathcal{R}_{1} \cup\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)\right)^{1-1 /(2 \mathscr{L})}\left(\int_{\mathbb{R}^{2}}|\log | e^{u+i v}-a \|^{2 \mathscr{L}} d \Psi(u, v)\right)^{1 /(2 \mathscr{L})}\right. \\
& =\left(\Psi\left(\mathcal{R}_{1} \cup\left(\mathbb{R}^{2} \backslash \mathcal{R}_{4}\right)\right)^{1-1 /(2 \mathscr{L})}\left(\mathbb{E}\left[|\log | \frac{L_{1}(\sigma, X)}{L_{2}(\sigma, X)}-\left.a\right|^{2 \mathscr{L}}\right]\right)^{1 /(2 \mathscr{L})}\right. \\
& \ll \frac{\log \log T}{(\log T)^{\sigma}}
\end{aligned}
$$

Thus, this proves (3.7).
Finally, by (1.3), (3.1), (3.2) and (3.7)

$$
\begin{aligned}
& \frac{1}{T} \int_{T}^{2 T} \log \left|c_{1} L_{1}(s)+c_{2} L_{2}(s)\right| d t \\
= & \mathbb{E}\left(\log \left|c_{1} L_{1}(\sigma, X)+c_{2} L_{2}(\sigma, X)\right|\right)+O\left(\frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right) .
\end{aligned}
$$

4. Proof of Theorem 1

By Littlewood's lemma we have

$$
\begin{aligned}
\int_{\sigma}^{\sigma_{0}}\left(\sum_{\substack{\beta>u \\
T \leq \gamma \leq 2 T}} 1\right) d u= & \frac{1}{2 \pi} \int_{T}^{2 T} \log |E(\sigma+i t, Q)| d t \\
& -\frac{1}{2 \pi} \int_{T}^{2 T} \log \left|E\left(\sigma_{0}+i t, Q\right)\right| d t+O(\log T),
\end{aligned}
$$

where σ_{0} is a real number such that $E(s, Q)$ has no zero in $\Re s \geq \sigma_{0}$. By Theorem 2

$$
\begin{aligned}
\int_{\sigma}^{\sigma_{0}}\left(\sum_{\substack{\beta>u \\
T \leq \gamma \leq 2 T}} 1\right) d u= & \frac{T}{2 \pi} \mathcal{M}(\sigma)-\frac{1}{2 \pi} \int_{T}^{2 T} \log \left|E\left(\sigma_{0}+i t, Q\right)\right| d t \\
& +O\left(T \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
\end{aligned}
$$

Let $h>0$. Differencing this at σ and $\sigma+h$ and then dividing by h, we deduce that

$$
\frac{1}{h} \int_{\sigma}^{\sigma+h}\left(\sum_{\substack{\beta>u \\ T \leq \gamma \leq 2 T}} 1\right) d u=\frac{T}{2 \pi} \frac{\mathcal{M}(\sigma)-\mathcal{M}(\sigma+h)}{h}+O\left(\frac{T}{h} \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

Since $\mathcal{M}(\sigma)$ is twice differentiable, for a sufficiently small $h>0$,

$$
\frac{1}{h} \int_{\sigma}^{\sigma+h}\left(\sum_{\substack{\beta>u \\ T \leq \gamma \leq 2 T}} 1\right) d u=-\frac{T}{2 \pi} \mathcal{M}^{\prime}(\sigma)+O\left(h T+\frac{T}{h} \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right)
$$

The integrand is a decreasing function of u, so

$$
\sum_{\substack{\beta>\sigma+h \\ T \leq \gamma \leq 2 T}} 1 \leq-\frac{T}{2 \pi} \mathcal{M}^{\prime}(\sigma)+O\left(h T+\frac{T}{h} \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right) \leq \sum_{\substack{\beta>\sigma \\ T \leq \gamma \leq 2 T}} 1
$$

In the left inequality we replace σ by $\sigma-h$ and use $\mathcal{M}^{\prime}(\sigma-h)=\mathcal{M}^{\prime}(\sigma)+O(h)$. Then we find that

$$
\sum_{\substack{\beta>\sigma \\ T \leq \gamma \leq 2 T}} 1=-\frac{T}{2 \pi} \mathcal{M}^{\prime}(\sigma)+O\left(h T+\frac{T}{h} \frac{(\log \log T)^{2}}{(\log T)^{\sigma}}\right) .
$$

Taking $h=(\log T)^{-\sigma / 2} \log \log T$, we obtain

$$
\sum_{\substack{\beta>\sigma \\ T \leq \gamma \leq 2 T}} 1=-\frac{T}{2 \pi} \mathcal{M}^{\prime}(\sigma)+O\left(T \frac{\log \log T}{(\log T)^{\sigma / 2}}\right)
$$

Therefore,

$$
N\left(\sigma_{1}, \sigma_{2} ; T\right)=\frac{T}{2 \pi}\left(\mathcal{M}^{\prime}\left(\sigma_{2}\right)-\mathcal{M}^{\prime}\left(\sigma_{1}\right)\right)+O\left(T \frac{\log \log T}{(\log T)^{\sigma_{1} / 2}}\right)
$$

holds for $1 / 2<\sigma_{1}<\sigma_{2}<1$.
Acknowledgement. This work was supported by the Incheon National University Research Grant in 2015.

References

[1] S. Gonek and Y. Lee, Zero-density estimates of Epstein zeta functions, Quart. J. Math. doi:10.1093/qmath/haw041.
[2] Y. Lamzouri, S. Lester, and M. Radziwill, Discrepancy bounds for the distribution of the Riemann zeta-function and applications, http://arxiv.org/abs/1402.6682.
[3] Y. Lee, On the zeros of Epstein zeta functions, Forum Math. 26 (2014), no. 6, 1807-1836.
Yoonbok Lee
Research Institute of Natural Sciences
Department of Mathematics
Incheon National University
Incheon 22012, Korea
E-mail address: leeyb@inu.ac.kr, leeyb131@gmail.com

