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SELF-HOMOTOPY EQUIVALENCES RELATED TO
COHOMOTOPY GROUPS

Ho Won CHol, KEE YOuNG LEE, AND HYUNG SEOK OH

ABSTRACT. Given a topological space X and a non-negative integer k,
we study the self-homotopy equivalences of X that do not change maps
from X to n-sphere S™ homotopically by the composition for all n > k.
We denote by Eg (X)) the set of all homotopy classes of such self-homotopy
equivalences. This set is a dual concept of Séc (X)), which has been studied
by several authors. We prove that if X is a finite CW complex, there are at
most a finite number of distinguishing homotopy classes Sg (X), whereas
Sf (X) may not be finite. Moreover, we obtain concrete computations of
Eg(X) to show that the cardinal of 5,2 (X) is finite when X is either a
Moore space or co-Moore space by using the self-closeness numbers.

1. Introduction

Throughout this paper, all topological spaces are based and have the based
homotopy type of a CW-complex, and all maps and homotopies preserve base
points. For the spaces X and Y, we denote by [X,Y] the set of homotopy
classes of maps from X to Y. No distinction is made between the notation of a
map X — Y and that of its homotopy class in [X,Y]. Let S™ be the n-sphere.
Then, [S™, Y] is known as the n-th homotopy group of space Y, denoted by
T, (Y) and [X, S™] is referred to as the n-th cohomotopy group of X, denoted
by 7™ (X).

Given X, we denote by £(X) the set of all homotopy classes of self-homotopy
equivalences of X. Then, £(X) is a subset of [X, X] and has a group struc-
ture given by the composition of homotopy classes. £(X) has been studied
extensively by various authors, including Arkowitz [2], Maruyama [3], Lee [7],
Rutter [8], Sawashita [9], and Sieradski [10]. Moreover, several subgroups of
E(X) have also been studied, notably the subgroup Euk (X), which consists of
the elements of £(X) that induce the identity homomorphism on homotopy
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groups 7;(X) for i = 0,1,2,..., k. In [3], Arkowitz and Maruyama introduced
and determined these subgroups for Moore spaces and co-Moore spaces using
the homological method. In [4], the second and third authors used homotopy
techniques to calculate these subgroups for the wedge products of Moore spaces.

Given a topological space X and a non-negative integer k, consider the self-
map f : X — X such that go f is homotopic to g for each g : X — S™ and
for each n > k. We denote by [X, X ]ﬁ,c the set of all homotopy classes of such
self-maps of X, that is,

[X,X]ﬁk:{fe [X,X]|go f~ gforeach g: X — S", for all n > k}.

This set has a monoid structure by composition.
We define
LX) =E(X)N[X, X]L.

Then, it is easy to prove that Eg(X) is a subgroup of £(X) and has a lower
bound, whereas Eé“(X ) has an upper bound.

In this paper, we compute these subgroups of Moore spaces and co-Moore
spaces, by first showing that if X is a finite CW complex, then there are at
most a finite number of distinguishing subgroups Eg(X ).

When G is an abelian group, we let M (G, n) denote the Moore space; i.e.,
the space in which G is a single non-vanishing homology group at the n-level.
We note that if n > 3, then M (G, n) is characterized by

~ | G ifi=n

Hi(M(G,n)) :{ 0 ifi#n.
Furthermore, we let C(G,n) denote the co-Moore space of type (G,n) defined
by

reem={§ 7

Next, we compute Eg(X) for X = M(Zy,n) or X = C(Zp,n) to obtain the
following tables:

podd p=0(mod4) p=2(mod4)

531+1 (M(Zp,n)) 1 Ly Zo
EX(M(Zy,n)) 1 Zs A
& (M(Zyn) 1 1 1
podd p=0(mod4) p=2 (mod4)
EL(C(Zy,n)) 1 Lo & Lo Ly © Ly
€ 1(C(Zp,n) 1 Zs © Lo Zy © L
€ 5(C(Zp,m) 1 1 1
Henceforth, when a group G is generated by a set {a1,...,a,}, then we

denote the group by G{ai,...,as} or G = {as,...,a,). Moreover, when f :
X — Y is amap, fix: m(X) = m(Y) and f** : 78(Y) — 7¥(X) denote the
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induced homomorphisms in k-th homotopy group and k-th cohomotopy group,
respectively.

2. Preliminaries

In this section, we review and summarize selected definitions and results
provided in [1, 3, 5, 12], knowledge of which would be useful when reading this
paper.

First, we summarize the concepts and results introduced in [5]. For any
non-negative integer n, Ay (X) consists of the homotopy classes of the self-map
of X that induce an automorphism from m;(X) to m;(X) for ¢ = 0,1,...,n.
AF(X) is a submonoid of [X, X] and always contains £(X). If n = oo, we
briefly denote AZ°(X) as Ay(X). If k& < n, then A}(X) C Ag(X); thus, we
have the following chain by inclusion:

E(X) C A (X) C - CAN(X) C A(X) = [X, X].

Definition 2.1. Let X be a CW complex. The self closeness number of X
is the minimum number n such that Af(X) = £(X) and is denoted here by
NE(X). That is,

NE(X) = min{n | A} (X) = E(X) for n > 0}.

By [5, Theorem 1], the self-closeness number is a homotopy invariant. More-
over, if X is an n-connected space with dimension m and £(X) # [X, X], then
we have n < NE(X) < m by [5, Lemma 4 and Theorem 2].

Proposition 2.1 ([3]). If X is (k — 1)-connected, Y is (I — 1)-connected, and
further, if k,1 > 2, and dim P < k + [ — 1, then the projections X VY — X
and X VY — Y induce a bijection.

[P,XVY]—[P,X]|®I[PY]

By [12], the generators of some homotopy groups of spheres can be summa-
rized as follows.

i<0 =0 =1 +1=2 =3 i=4,5
[S7F 87 0 Z Zo Zo Zioy 0
Generator in Tn n2 Uy, 0
Here, we note that for the Moore space M (Z,,n) = S" U, e™t1 there exists
a mapping cone sequence

g By gn Ly gny, entl Ty gl Py gnitl
where p is a map of degree p, i is an inclusion and 7 is a quotient map. In [1],
Araki and Toda computed the homotopy groups, and cohomotopy groups of
M(Z,,n), and set of homotopy classes of self-maps on M (Z,,n). The results

can be summarized as follows.
1. Homotopy group (M (Zp,n)) for k =n, n+ 1:

70 (M (Zp,m)) = Zplig(en)}
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and
o 0 if p = odd,
Tn+1(M(Zp,n)) = { Zo{ig(n,)}  if p = even.

2. Cohomotopy groups ©" =3 (M (Z,,n)):

TABLE 1
1<0 i=1 i=2 i=3 i=4
p= 1 (mod 2) 0 Zp 0 0 Z(p,24)
p= 0 (mod 4) 0 Zp ZQ ZQ D ZQ ZQ D Z(p724)
p=2 (mod 4) 0 Zp Zo Ly Zo @ Z(p724)
Generators - lnOq Mnoq fn,M20q Nnof,Vnoq

3. The set of homotopy classes [M(Zy,n), M(Z,,n)]:
TABLE 2

p=1(mod2) p=2(mod4) p=0(mod4)
[M(Zp,n), M(Zyp, n)] Ly Loy Lp © Lo
Generators 1x 1x lx,iom,0q

3. Self-homotopy equivalences that induce the identity on
co-homotopy groups

In this section, we study the properties of the sets EIE(X ). We recall
EL(X) = E(X) N [X, X]},
where
[X,X]ﬁk ={fe[X,X]|gof~gforeachg: X — S", for all n > k}.
Equivalently,
ENX) = {f € EX) | f*" = idpn(x) on 7" (X) for n > k}.

This definition indicates that % (X) C £%(X) for n > m. Hence, we obtain

a chain of subsets as follows:

(3:1) E(X) 2+ 2 EHX) 2 &L 4(X) 2+ 2 E{(X).
Proposition 3.1. Eg(X) is a subgroup of £(X).

Proof. Let f, g € EQ(X) and g be the homotopy inverse map of g. Because
gog=1dx and go g =idx,

ider(x) = (90 9)* = g 0 g** = g™,

Thus,
(fog)* =g o f* = g% =idui(x).
Hence, fog e 5,2 (X). Consequently, 52 (X) is a subgroup of £(X). O
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Lemma 3.2. If X is a finite CW complex, then there exists a positive integer
N such that [X,SN] = 0.

Proof. Let dim(X) = m < co. We choose N such that N > m. If f € [X, SV],
then f(X) C (SV),, by the cellular approximation theorem, where (S%V),, is
m-skeleton of SV. Because SV = e Uel, (SV),, = €. Thus f = 0 and
consequently, [X, SN] = 0. O

Theorem 3.3. If X is a finite CW complex, then there are at most a finite
number of distinguishing subgroups EE(X).

Proof. Let m < oo be the dimension of X. By definition of EQ(X), we see that

E(X)D - DENX)DE_(X) D D ENX).

By Lemma 3.2, [X,8™%] = 0 for i = 1, 2,.... Hence £(X) = Egl_‘_l(X).
Consequently, we have the following finite chain of subsets:
E(X) =€, 1 (X) 2EL(X) 2+ DELN) 2 -+~ D EF(X). 0

Next, we consider abelian groups G; and G5 and Moore spaces M; =
M(G1,n1) and My = M(Gg,n2). Let X = M; V M. We denote by i; :
M; — X the inclusion and by ¢; : X — M the projection, where j = 1,2. If
f: X — X, then we define fj;, : M — M; by fjrx =q;o foiy for j,k=1,2.

By Proposition 2.1, let X = M; V M5 then

[X, X] = [My, M1] & [M7, M) @ [Ma, M1] & [Mao, My].

By [3, Proposition 2.6], the function § which assigns to each f € [X, X], the

2 X 2 matrix
~(fu1 fi2
e(f) - <f21 f22> 9

where fji € [My, M;], is a bijection. In addition,
(1) 0(f +g) = 0(f) +0(g), so 0 is an isomorphism [X, X] = @ j_; o[Mg, M;].
(2) 0(fg) = 0(f)0(g), where fg denotes composition in [X, X] and 6(f)6(g)
denotes matrix multiplication.

Further, [3] also introduced the forms of the homomorphism induced by f
on homotopy, homology, and cohomology groups, respectively.

Now, we determine the form of the homomorphism induced by f on coho-
motogy groups.

Proposition 3.4. For any f € [X, X]|, we have

PR y72) = (FITOn) + F35 (2), Fi5 () + o (12)),

where v, € TF (M) and 2 € 8 (Ms).
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Proof. For any f € [X, X], we identify that
f= Ji1 o fie
o fa2)
Thus, f induces the homomorphism f# on cohomotopy groups as follows:

. tk elk
e (T ).

21 22

Because 7% (X) = 7F(M;) @ 7% (Ms), we are able to identify v € 7%(X) as
v = (y1,72), for some ; € 7¢(M;). Then

P = = Gune) (0 42)

= (71 f11 + vafo1, 1 12 + Y2 f22)

= (Y (n) + £ (), 15 () + £55 (12)). 0
Proposition 3.5. If f Eg(X), then
1« 0
tk _ 7k (M)
(3.2) f ( ¢ er(Mz)) |

Proof. Because f induces the identity on 7¢(X), f* = idk(x) = 1&?, where

1x € [X, X] is the identity map. As 1x = (11(\)41 1132 ), we have
gk _ gtk _ (Leroa) 0 _
f X ( 0 Lok (M) O

Here, we review the group of self homotopy equivalences of Moore space.
Let p be a positive integer. In [11], Sieradski proved the following result by
using the universal coefficient theorem for homotopy:

Ly X Ly n=2
3,

Y]

EM(Zy,n)) =
(M(Zy,7) {Z@m)ng "
where Z7 is the automorphism group of Z,.

Our computations require us to determine the definite forms of elements in
E(M(Zp,n)) and we use the concept of the self-closeness number introduced
in [5] for this purpose. Because the Moore space of type (G,n) has the self
closeness number n by [5, Corollary 3], A} (M (Zp,n)) = E(M(Zy,n)) by [5,
Definition 2.1 or Theorem 4], where A} (M (Zp,n)) is the set of homotopy
classes of self-maps of M(Zy,,n) that induce an automorphism of m;(X) for
i=0,1,...,n. To determine the definite forms of elements in £(M(Z,,n)), we
compute Af (M(Zy, n)) rather than E(M(Zy, n)).

Consider the mapping cone sequence

sn Py gn Ly gny, entt Ty gntl P, gntl



SELF-HOMOTOPY EQUIVALENCES RELATED TO COHOMOTOPY GROUPS 405

where p is a map of degree p, 7 is the inclusion and 7 is the quotient map.

Theorem 3.6. Let X = M(Z,,n) be a Moore space. Then we have
{hxl (kp) = 1) p=1 (mod 2)
Af(X)=q{l-ionom+k-1x|(k,p) =1} p=0 (mod 4),
{k-1x,(k+p)-1x|(k,p) =1} p=2 (mod4).

Proof. We first note that m,(X) = Z,{i4(tn)}.
Suppose that p is odd. Then [X, X]| = Z,{1x}. Moreover, we have

Lxg(ig(tn)) = 1x 0@ 0ty = ig(ty).
Thus, (k- 1x)4(ig(tn)) =k - (i3(en)). It follows that
AF(X) = {k-1x | (hp) = 1) = Z;,
Suppose that p =0 (mod 4). In this case,
(X, X]=Zs®Zp{ion,om 1x}.

Because 1x¢(i3(tn)) = i4(tn) and (ion, om)(ig(ty)) = ion,omoioL, =0, we
have

(0-(iomnom)+k-1x)i(ig(tn)) = (k- 1x)s(ig(tn)) = k- (ig(tn))
for £ € Zy and k € Z,. Therefore
AY(X)={l-(ionpom)+k-1x|(k,p) = 1}.

Suppose that p = 2 (mod 4). In this case, we have [X, X] = Zo,{1x}. As
k-1x4(ig(en)) = k- ig(n) for 0 <k <pand (p+k)- Lx4(ig(tn)) = k- ig(en) for
0 < k < p, we have

ANX) = (k- 1x | (kyp) = 1,1 <k <p}U{(p+k) - 1x | (k,p) = 1,0 < k < p}.
O

4. Computation of S,g(M(Zp, n))

In this section, we compute 5,3 (M(Z,,n)) and determine their generators for
k=n+1,n, and n — 1. Throughout this section, we let X = M(Z,,n).
Theorem 4.1. For 5ﬁ+1(X), we have the following table:

p odd p=0(mod4) p=2 (mod4)
57111+1 (X) 1 Ly Zo
generators 1x lion,oq®lx L+ 1)1x

Proof. Because 7¢(X) = 0 for kK > n + 1 by Theorem 3.3, it is sufficient to
consider the (n + 1)-th cohomotopy group of X. From Table 1, 7"T}(X) =

Zp{tnt104q}.
Case 1. Let p be odd.
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By Theorem 3.6, for each f € £(X), f = klx for some k such that 0 < k <
p—1and (k,p) = 1. Thus, we have

fﬂ"Jrl(LnJrl om)=tpy10mo (klx) =k(tny10omolx) =k(tpt10m).
Therefore, to ensure that fint! =1
£ (X) = 1{1x}.
Case 2. Let p = 0 (mod 2).
By Theorem 3.6, for each f € £(X), f =tion,on®klx, for some £ =0, 1,
where k is an integer such that 0 <k <p —1 and (k,p) = 1. Thus, we have

mny, holds, k is require to be 1. Hence

fﬂ"Jrl(LnJrl om)=tpyr1om(lion,om Dklyx)
=Vlipy10moion, oM@ kippromoly
=kipy10m
because q o ¢ is homotopic to the constant map. Thus k& is require to be 1 and
¢=0or 1 to ensure that fin+l = 1, holds. Hence
& (X)) 2 Zo{lion,oq®1x| £=0,1}.
Case 3. Let p = 2 (mod 4).
By Theorem 3.6, for each f € £(X), f = (k + £)1x for some k and ¢ such
that 0 <k <p-—1, (k,p) =1 and £ = 0, p. Thus, we have
i om) = (k+0(tpg1omolyx) = (k+Otny1 0.

Thus k is require to be 1 and £ = 0 or p to ensure that ff+! =1
Hence,

holds.

Tn+1

E81(X) 2 Za{(£+ 1)1x | £=0,p}. O
Theorem 4.2. For £} (X), we have the following table:
podd p=0(mod4) p=2(mod4)
EL(X) 1 Lo 7
generators  1x lx®liongyom (L+1)1x

Proof. We first note that £ (X) C EfH_l(X). From Table 1,

o _J0 p=1 (mod 2),
X {ZQ{?’]WIOW} p =0 (mod 2).

Case 1. Let p be odd.

By Theorem 4.1, £4(X) C £*

Case 2. Let p = 0 (mod 4).

By Theorem 4.1, for each f € £(X), we have f = lion,or®1x for £ =0, 1.
Thus, we have

L0 =1,

fun(nnoﬂ')ZnnOFO(fionnOﬂ-@lx)
={np,omoionom@n,omoly

=TMnom
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because moi is homotopic to the constant map. Thus for any £ = 0,1, f#* = 1,
holds. Hence,
ENX) 2 Zo{lion,oq@1x|l=0,1}.

Case 3. Let p =2 (mod 4).

By Theorem 4.1, for each f € £(X), f = ({+ 1)1x, for £ = 0,p. Thus, we
have

M muom) =+ D(mmomolx) =+, om.

Therefore, for any £ = 0,p, f¥* = 1, holds. Hence,

ERX) = Zo{ (1 + 0)1x[ £ =0, p}. O
Theorem 4.3. If n > 3, then . (M(Z,,n)) = Hlarzym}-

Proof. First we note that 5271()() C & (X) and

0 p: odd
T HX) = Z2 ® LZo{fl-1,75—1 0} p =0 (mod 4)
Za{my -y 0 q} p =2 (mod 4)
by Table 1.
In case that p is odd, it is clear because £ | (X) C £4(X) 2 1 by Theorem
4.2.

Suppose p = 0 (mod 4). By Theorem 4.2, for each f € £(X), f=4lion,o
q® 1x for £=0,1. Thus, we have
I @i 09) = (a1 &My 0q) o (lion, 0q® lx)
=fp_10{ion,oqdlx)
@1p_10go(lion, oq®lx)
= (lfjp—10i0n, 09D fp_101x)
+(nn_10qoion, 0q®n,_joqoly)
= (p—1 010 © 4 Tu1) + (_1 © 4 B 0)
=+ 1M1 0¢B 71
because ¢ o ¢ is homotopic to the constant map.

For fi"=1 = 1. | to be valid, 1+ ¢ = 1; thus £ = 0. Hence, £ | (X) =
{1x}.

Suppose p = 2 (mod 4). By Theorem 4.2, for each f € £(X), f=({+1)1x
for £ = 0,p. Thus, we have

Fr o) = (C+ Dy oqolx = (L+ 1)y oq.

If ¢ = p, then (0 +1)n2_j0q =3n2_,0q # n>_, oq because 7" 1(X) =
Z4. Thus, to ensure that =1 = 1, | holds, ¢ is require to be 0. Hence
& (X)=1{1x}. 0

Theorem 4.4. For X = M(Z,,3), we have the following table:
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podd p=0 (mod4)
g_(x) 1 Zs

generators 1y lx ®ionzoq

Proof. Based on the Puppe Sequence, we have

p =2 (mod 4)
Lo
(p+1lx

WQ(X){O p=1 (mod 2),

Zo{nioq} p=0 (mod 2).
Case 1. Let p be odd.

By Theorem 4.2, &% | (X) C £L(X) = 1.

Case 2. Let p =0 (mod 4).

By Theorem 3.6, for each f € £(X), f = klx ® lion, ox for some k and ¢
such that 0 <k <p—1, (k,p) =1 and £ = 0,1. Thus we have

Frtmiom) = (3 om) o (klx @ lions om)
=kniomoly @lmiomoionzom
=kiyom

because 7 o i is homotopic to the constant map. Thus, for f"~1 =1,  to
hold, k is required to be 1. Hence,

E (X)X Zy{lx ®lionsoq|l=0,1}.
Case 3. Let p = 2 (mod 4).
By Theorem 3.6, for each f € £(X

), f = (k+£¢)1x for some k and [ such
that 0 <k <p-—1, (k,p) =1 and £ = 0, p. Thus, we have
Ft g oq) = (k+0m3 0q0lx = (k+ )5 0q.
Therefore, to ensure that f#~1 =1, _ holds, k is required to be 1. Hence,

E (X)X Zo{(L+1D1x|l=0,p}.

O
5. Computation of S,g(C(Zp, n))

In this section, we compute 5,2 (C(Z,,n)) and determine their generators for

k =mn,n—1 and n — 2. Throughout this section, we let X = C(Z,,n) and
My = M(Zy,n—1).

First of all, we determine the generators of [X, X] and [X, S"].
It is well known that

C(Zy,n)=M(Z,n)VM(Zyp,n—1)=5"VM(Z,,n—1)
for n > 3. Thus we have

[XvX] = [San] D [MQ,X]
and by Proposition 2.1,

(X, X] 2 [X,S" & [X, M.
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Consequently,
(X, X] = [5", S"] & [Ma, S"] @ [S™, Ma] & [Mz, M].
In [3], we have
E(X)=E(S™) @ [M,S"] @ [S™, Ma] ® E(My).
Consider the mapping cone sequence
S™ Ly 8" Ly M(Zy,n) — g1 Ly gntl
and let 47 : S™ — X and i : Ms> — X be inclusion maps and ¢; : X — S™ and

q2 : X — M> be projection maps.
Then, from Table 1 and Theorem 3.6, we have the following lemmas.

Lemma 5.1. If iy : S" — X and i : My — X are inclusion maps and
q1: X — 8™ and g2 : X — Ms are projection maps, then we have:

p=1 (mod 2) X, X] : 'ZEBZP@ZP '
Generators 210Ln0Q1, 110l OTOQ2, 74101A120q2
X, X] YV Y Y’ XY
p=0 (mod 4) Generators o {10tn g1, 110Ln0TOg2,
120007, -10q1, 120407, _10TOq2, 1201, 0q2
p =2 (mod 4) X, X] . . Z@ZPQZQ_@Z% _
Generators 210t 0Q1, 110LpO0TOQ2, 120107y —-10Q1, ZQOl]\,jzoqQ

As £(S™) = Zo, we have the following lemma.

Lemma 5.2. £(X) is isomorphic to

p=1 (mod 2) Ly ® Ly S (Zy)
sz(mod4) ZQ@Z},@ZQ@(ZQNZ;)
p=2 (mod 4) | Zs® Ly ® Lo @ (g X L)

7 (X) = 7 (S") @ 7" (M (Zp,n — 1)),
Thus, we have the following lemma from Table 1,

Lemma 5.3. For n"(X), we have the following table:

7 (X) Generators
r=n YASY ln0q1, LpOTOQ2
1 p=1 (mod 2) Zo NMn—1°q1
p =0 (mod 2) Lo ® Zo Mn—19q1, Mn_19TOqa
p=1 (mod 2) Zo n2_soq
r=n—2|p=0(mod4) | Zs®ZsBZs n2_s0q, N2_50T0G2, TnoGa
p =2 (mod 4) Lo ® Ly N2_50q1, Tnoq2

Now, we compute Eg(X ) and determine their generators for k = n,n — 1,
and n — 2.

Theorem 5.4. For £} (X), we have the following table:
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p=1 (mod2) p=0 (mod4) p=2(mod4)
EF(X) 1 Ly @ Lo Lo @ Lo

Proof. Because 7¢(X) = 0 for k > n, it is sufficient to consider the case that
k =n. From Lemma 5.3, 7"(X) = Z ® Zp{tn 0 g1, tn, o ™ 0 g2 }. By Proposition
3.4, each f € £(X) can be identified as

f= Jin o fie
Jor fa2)
Let v = (71,72) = (tn © g1, tn © T 0 g2) be the generator.
Case 1. Let p be odd.
By Lemma 5.2, for each f € £(X), we have
fi1 = si1 01, 0q1,
fi2 =tiy oty 0moq,
Ja1 =0,
fa2 = kirolp, 0qo
for some k, s and ¢ such that 0 <t <p—-1,0<k < p-—1and (k,p) =1,
s = —1,1. Thus we have
(1) = tw o qi 0 s(i1 0ty 0 q1)
= Sl 0G1 0% O Ly © Q1 = Sty O (1,
ffg('yl) =1p0q10t(i1 0Ly 0TOQ2)
=11, 0q1 041 0Ly OW O Qg = tLy OT O Qo,

55 (72) = tn 00 g2 0 (Kiz 0 Lag, 0 go) = ki 0 70 go.

By Proposition 3.5, s =1, t =0 and k£ = 1. Hence

) 0
Shx)y=1{ (Moo .
n( ) {( 0 ’LQO]_]\/[ZOqQ

Case 2. p =0 (mod 4).
By Lemma 5.2, for each f € £(X), we have
J11 = si1ow, 0q1,
fi2 =tiy o, omoqa,
fglzmigoionn,loql,
Jaa =Vlizgoiomn,_10moqy®kizoly, oq
fork, ¢/, m, sand t suchthat 0 <t <p—-1,0<k<p—-1,m,f=0,1,s=—1,1
and (k,p) = 1. Thus we have

f?(%) =1,0q1058(i1 0Ly 0q1)

= Sl ©q1 011 O Ly O Q1 = Slp O q1,

ffg(’h) =lnoq Ot(il Oy O7TOq2)
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=11,0q10%1 0Ly ©0qO Qo =1L, OTOqa,
fﬁ{‘(w) =tp0omoqgzom(izg0ion,_10q)
=MLy 0qogaoigoion,_10q =0,
fa(y2) = tnomogao (lizoion, 1 0moqs® kizoly, oqo)
=/l1, 0mM0Q@r012040N,_10TO0qa B kiy,0om0oga0igolp, 0qo
=kipomoqs

because 7 o ¢ is homotopic to the constant map.
By Proposition 3.5, s =1,t =0,k =1 and m,¢ = 0,1. Hence

# ~ 110Lp O q1 0 _
8”(X)_Z2@Z2{(migoionn1oq1 ba @iy oly, 0o m,£=0,1¢,
where « = i3 04 0m,_1 070 qs.

Case 3. Let p = 2 (mod 4).

By Lemma 5.2, for each f € £(X), we have

fi1 =si1 o, 0q1,
fi2 =tiy o, 0o @,
fo1 = miz 0in,_10q,
fao = (k4 £)iz o lp, 0 q2
for k, ¢, m,sand tsuchthat 0 <t <p—-1,0<k<p—1,m=0,1,s=—-1,1,
¢=0,p and (k,p) = 1. Thus we have
ff?(’h):LnO(hOS(ilOLnOth)
= 8lp 01 0%10lpOq1L = Sln O q1,
Fi () =thoqiot(ito, omogs)
=11, 0G1 011 O Ly OT O Gy = tLy O O Q2,
FA(72) = th 0o gz 0m(iz 0 i1 0 q1)
=ML, 0qO0qa0i201N,—10q =0,
F55(v2) = tnomoga o (k+ ) (i 0 1ag, 0 g2)
=(k+tpomoqgaoigoly, 0gs = (k+ L)L, 0moqe

because 7 o ¢ is homotopic to the constant map.
By Proposition 3.5,s =1,t =0,k =1,¢=0,p and m = 0,1. Hence

# ~ 11 O Ly O q1 0
En(X)Z2@Z2{ (migoionn_l oq1 (£+ 1)i201M20q2>‘

sz,landsz,p}. 0

Theorem 5.5. For &

n—1

(X), we have the following table:
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p=1 (mod2) p=0 (mod4) p=2 (mod4)
531—1(X) 1 Zo ® 7o o ® 7o

Proof. From Lemma 5.3, we have

Zio{ Ny —
anl(X) _ 2{77 1Oq1}
Ly ® Lo{nn-1°q1,Mn-10°7 0 g2}
Case 1. Let p be odd.
By Theorem 5.4, we have 5271()() CE(X)=1.
Case 2. Let p = 0 (mod 4).
By Theorem 5.4, for each f € £(X), we have
Ji1 =1d10tn0q,
f12 - Oa
f21 = mig ) ’L o 77",1 (e} q1,
faa =Vlizgoion, 1omoqgy®izoly,oqe
for m,¢ = 0,1. By Proposition 3.5, it is sufficient to determine fz; and foo;

however, we have

211?71(72) =1Np_10moqgaom(iag0ion,_10q1)

=MNp-10M0g20120%0MN,_10q1 =0,

3 (v2) = Mm_10mogao (Liz0i0,_1 0T O e iz o 1y, 0g2)

={1,-10M0(qa0%20%0MN,_10TOqgs P Np_10TOga0i301p, 002
=Mn-1°7T0Qq2

because 7 o ¢ is homotopic to the constant map.
By Proposition 3.5, m,¢ = 0, 1. Hence,

531—1(X)§Z2EBZ2{( e tn o 0 )’

migoton,—10q Ladizoly, oq
E:O,landm:(),l},

where o =43 0%01,_10¢qo ga.
Case 3. Let p =2 (mod 4)
By Theorem 5.4, for each f € £(X), we have

Ji1=1d10tn0q,
J12=0,
J21 =miz 0inu_10q,
foo= (14 £)iao1lp, 0qe
for m = 0,1, £ = 0, p. By Proposition 3.5, it is sufficient to determine fs; and

fa22; however, we have

3?71(72) =MNn-10MTO(QG20 m(zZ ¢} i?]n,1 o Q1)
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=MNp-10T0g20i20in,-10q1 =0,
557 (72) = mu—10mogao (L4 0)(iz 0 1y, © g2)
=(1+0n—10moqroigolpy,oqe = (14+)n_10m0q

because ¢ o ¢ is homotopic to the constant map.
By Proposition 3.5, £ = 0,p and m = 0,1. Hence

(XY~ 7,07 .0 6n 0 g1 )
gn—l( ) 2@ 2{(i20i077n1 0 q1 (€+1>’L-201MQO(12
(=0pandm=01}

Theorem 5.6. 5272(C(Zp,n)) =1.
Proof. From Theorem 5.3,

Zoin; s 0oqm} p=1 (mod 2),
X)) = Lo @ Lo @ Lofni s 0 qu, 20T O G2, 7w 0 ga} p=0 (mod 4),
Ly & La{m_5 © q1, 77 © g2} p =2 (mod 4).

Case 1. Let p be odd. By Theorem 5.5, Eﬁ_Q(X) - Eﬁ_l(X) ~1.

Case 2. Let p = 0 (mod 4).
Then, the generator of 77~ 2(X) is
7= (11,72) = (M2 0 q1, 75 © T 0 g2 B i © G2).
By Theorem 5.5, for each f € £(X), we have
Ji1=110tn04q1,
J12 =0,
Ja1 =miz0ion,_10q,
Jaa =Lla®izolp, 0qo
for m,£=0,1and a =iy04i0m,_10qoqgs. By Proposition 3.5, it is sufficient
to determine fo; and f2s; however, we have
52 (r2) = mp_s0m0 g @My 0 g omlizoion, 10q)
= m777217207roq201'201'077n_1oq1 @ mi}p, 0Qqa 042 0101M,—-1°q1
= Ml 010Ny 0 g1 = MNp—27n—1° q1
= mi, _3 0 q1,
52 () = a0 o g2 ® 7 0 g2 0 (fa i 0 Lar, © )
=1 p0moqo (fa®izoly, 0g2) + 7, 0 g2 0 (ba @iz 0 1, © g2)
:Eni_Qowoqgoa@ni_QOWOWoigole oqo
+lipogeoa® i 0q2 00201, 0qe
= 20T 0 gz + {ijy 0 iNy—1 070 g2 Bl 02
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=1 _y0moq+ns_y0mOq B ilnoqs
=1+ _y0m0qe B Npoge

because ¢ o i is homotopic to the constant map and 7, o in, 2 = n2_5 =
Nn—2 ©Mn—1-
By Proposition 3.5, £ = 0 and m = 0. Hence,

f ~ 110t oq 0
5n—2(X)_1{( 0 1'201MZOQ2)}-

Case 3. Let p =2 (mod 4).
Then the generator of 7"~ 2(X) is v = (v1,72) = (N2_5 0 q1,7n © q2). By
Theorem 5.5, for each f € £(X), we have

fii=1i101, 041,

f12 =0,

fo1 =migoin,_104q,
foo = (1+L)izoly, 0q

for £ = 0,p and m = 0,1. By Proposition 3.5, it is sufficient to determine fs;
and fo9; however, we have

g?_2('72) =1p0Q2 0 m(ig 0 1Mp—1 0 (J1)
= ] © G2 013 0 a1 0 41 = M5 O 01,
1 2(ya) = Tl 0 g2 o (1 + £)(iz 0 1oz, 0 o)

= (14 £)frogeoizoly, oqe = (14 €)7o g

because 7, © iMp_2 = Np—2 0 N1 = N2 _5.
If £ = p, then (14 p)7jn 0 g2 = 37, © g2 # T © g2 because 7, © g2 has order 4.
Thus, by Proposition 3.5, £ = 0 and m = 0. Hence,

4 ~ 110Lp O q1 0
g”_Q(X)_l{( 0 igoleoqQ)}' 0
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