SELF-HOMOTOPY EQUIVALENCES RELATED TO COHOMOTOPY GROUPS

Ho Won Choi, Kee Young Lee, and Hyung Seok Oh

Abstract

Given a topological space X and a non-negative integer k, we study the self-homotopy equivalences of X that do not change maps from X to n-sphere S^{n} homotopically by the composition for all $n \geq k$. We denote by $\mathcal{E}_{k}^{\sharp}(X)$ the set of all homotopy classes of such self-homotopy equivalences. This set is a dual concept of $\mathcal{E}_{\sharp}^{k}(X)$, which has been studied by several authors. We prove that if X is a finite CW complex, there are at most a finite number of distinguishing homotopy classes $\mathcal{E}_{k}^{\sharp}(X)$, whereas $\mathcal{E}_{\sharp}^{k}(X)$ may not be finite. Moreover, we obtain concrete computations of $\mathcal{E}_{k}^{\sharp}(X)$ to show that the cardinal of $\mathcal{E}_{k}^{\sharp}(X)$ is finite when X is either a Moore space or co-Moore space by using the self-closeness numbers.

1. Introduction

Throughout this paper, all topological spaces are based and have the based homotopy type of a CW-complex, and all maps and homotopies preserve base points. For the spaces X and Y, we denote by $[X, Y]$ the set of homotopy classes of maps from X to Y. No distinction is made between the notation of a map $X \rightarrow Y$ and that of its homotopy class in $[X, Y]$. Let S^{n} be the n-sphere. Then, $\left[S^{n}, Y\right]$ is known as the n-th homotopy group of space Y, denoted by $\pi_{n}(Y)$ and $\left[X, S^{n}\right]$ is referred to as the n-th cohomotopy group of X, denoted by $\pi^{n}(X)$.

Given X, we denote by $\mathcal{E}(X)$ the set of all homotopy classes of self-homotopy equivalences of X. Then, $\mathcal{E}(X)$ is a subset of $[X, X]$ and has a group structure given by the composition of homotopy classes. $\mathcal{E}(X)$ has been studied extensively by various authors, including Arkowitz [2], Maruyama [3], Lee [7], Rutter [8], Sawashita [9], and Sieradski [10]. Moreover, several subgroups of $\mathcal{E}(X)$ have also been studied, notably the subgroup $\mathcal{E}_{\sharp}^{k}(X)$, which consists of the elements of $\mathcal{E}(X)$ that induce the identity homomorphism on homotopy

[^0]groups $\pi_{i}(X)$ for $i=0,1,2, \ldots, k$. In [3], Arkowitz and Maruyama introduced and determined these subgroups for Moore spaces and co-Moore spaces using the homological method. In [4], the second and third authors used homotopy techniques to calculate these subgroups for the wedge products of Moore spaces.

Given a topological space X and a non-negative integer k, consider the selfmap $f: X \rightarrow X$ such that $g \circ f$ is homotopic to g for each $g: X \rightarrow S^{n}$ and for each $n \geq k$. We denote by $[X, X]_{k}^{\sharp}$ the set of all homotopy classes of such self-maps of X, that is,

$$
[X, X]_{k}^{\sharp}=\left\{f \in[X, X] \mid g \circ f \sim g \text { for each } g: X \rightarrow S^{n}, \text { for all } n \geq k\right\} .
$$

This set has a monoid structure by composition.
We define

$$
\mathcal{E}_{k}^{\sharp}(X)=\mathcal{E}(X) \cap[X, X]_{k}^{\sharp} .
$$

Then, it is easy to prove that $\mathcal{E}_{k}^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$ and has a lower bound, whereas $\mathcal{E}_{\sharp}^{k}(X)$ has an upper bound.

In this paper, we compute these subgroups of Moore spaces and co-Moore spaces, by first showing that if X is a finite CW complex, then there are at most a finite number of distinguishing subgroups $\mathcal{E}_{k}^{\sharp}(X)$.

When G is an abelian group, we let $M(G, n)$ denote the Moore space; i.e., the space in which G is a single non-vanishing homology group at the n-level. We note that if $n \geq 3$, then $M(G, n)$ is characterized by

$$
\widetilde{H}_{i}(M(G, n)) \cong\left\{\begin{array}{cl}
G & \text { if } i=n \\
0 & \text { if } i \neq n
\end{array}\right.
$$

Furthermore, we let $C(G, n)$ denote the co-Moore space of type (G, n) defined by

$$
\widetilde{H}^{i}(C(G, n)) \cong\left\{\begin{array}{cl}
G & \text { if } i=n \\
0 & \text { if } i \neq n
\end{array}\right.
$$

Next, we compute $\mathcal{E}_{k}^{\sharp}(X)$ for $X=M\left(\mathbb{Z}_{p}, n\right)$ or $X=C\left(\mathbb{Z}_{p}, n\right)$ to obtain the following tables:

	p odd	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n+1}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathcal{E}_{n}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathcal{E}_{n-1}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$	1	1	1

	p odd	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n}^{\sharp}\left(C\left(\mathbb{Z}_{p}, n\right)\right)$	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
$\mathcal{E}_{n-1}^{\sharp}\left(C\left(\mathbb{Z}_{p}, n\right)\right)$	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
$\mathcal{E}_{n-2}^{\sharp}\left(C\left(\mathbb{Z}_{p}, n\right)\right)$	1	1	1

Henceforth, when a group G is generated by a set $\left\{a_{1}, \ldots, a_{n}\right\}$, then we denote the group by $G\left\{a_{1}, \ldots, a_{2}\right\}$ or $G=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Moreover, when f : $X \rightarrow Y$ is a map, $f_{\sharp k}: \pi_{k}(X) \rightarrow \pi_{k}(Y)$ and $f^{\sharp k}: \pi^{k}(Y) \rightarrow \pi^{k}(X)$ denote the
induced homomorphisms in k-th homotopy group and k-th cohomotopy group, respectively.

2. Preliminaries

In this section, we review and summarize selected definitions and results provided in $[1,3,5,12]$, knowledge of which would be useful when reading this paper.

First, we summarize the concepts and results introduced in [5]. For any non-negative integer $n, \mathcal{A}_{\sharp}^{n}(X)$ consists of the homotopy classes of the self-map of X that induce an automorphism from $\pi_{i}(X)$ to $\pi_{i}(X)$ for $i=0,1, \ldots, n$. $\mathcal{A}_{\sharp}^{k}(X)$ is a submonoid of $[X, X]$ and always contains $\mathcal{E}(X)$. If $n=\infty$, we briefly denote $\mathcal{A}_{\sharp}^{\infty}(X)$ as $\mathcal{A}_{\sharp}(X)$. If $k<n$, then $\mathcal{A}_{\sharp}^{n}(X) \subseteq \mathcal{A}_{\sharp}^{k}(X)$; thus, we have the following chain by inclusion:

$$
\mathcal{E}(X) \subseteq \mathcal{A}_{\sharp}(X) \subseteq \cdots \subseteq \mathcal{A}_{\sharp}^{1}(X) \subseteq \mathcal{A}_{\sharp}^{0}(X)=[X, X] .
$$

Definition 2.1. Let X be a CW complex. The self closeness number of X is the minimum number n such that $\mathcal{A}_{\sharp}^{n}(X)=\mathcal{E}(X)$ and is denoted here by $N \mathcal{E}(X)$. That is,

$$
N \mathcal{E}(X)=\min \left\{n \mid \mathcal{A}_{\sharp}^{n}(X)=\mathcal{E}(X) \text { for } n \geq 0\right\} .
$$

By [5, Theorem 1], the self-closeness number is a homotopy invariant. Moreover, if X is an n-connected space with dimension m and $\mathcal{E}(X) \neq[X, X]$, then we have $n<N \mathcal{E}(X) \leq m$ by [5, Lemma 4 and Theorem 2].

Proposition 2.1 ([3]). If X is $(k-1)$-connected, Y is $(l-1)$-connected, and further, if $k, l \geq 2$, and $\operatorname{dim} P \leq k+l-1$, then the projections $X \vee Y \rightarrow X$ and $X \vee Y \rightarrow Y$ induce a bijection.

$$
[P, X \vee Y] \rightarrow[P, X] \oplus[P, Y]
$$

By [12], the generators of some homotopy groups of spheres can be summarized as follows.

	$i<0$	$i=0$	$i=1$	$i=2$	$i=3$	$i=4,5$
$\left[S^{n+i}, S^{n}\right]$	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0
Generator		ι_{n}	η_{n}	η_{n}^{2}	ν_{n}	0

Here, we note that for the Moore space $M\left(\mathbb{Z}_{p}, n\right)=S^{n} \cup_{p} e^{n+1}$, there exists a mapping cone sequence

$$
S^{n} \xrightarrow{p} S^{n} \xrightarrow{i} S^{n} \cup_{p} e^{n+1} \xrightarrow{\pi} S^{n+1} \xrightarrow{p} S^{n+1},
$$

where p is a map of degree p, i is an inclusion and π is a quotient map. In [1], Araki and Toda computed the homotopy groups, and cohomotopy groups of $M\left(\mathbb{Z}_{p}, n\right)$, and set of homotopy classes of self-maps on $M\left(\mathbb{Z}_{p}, n\right)$. The results can be summarized as follows.

1. Homotopy group $\pi_{k}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$ for $k=n, n+1$:

$$
\pi_{n}\left(M\left(\mathbb{Z}_{p}, n\right)\right) \cong \mathbb{Z}_{p}\left\{i_{\sharp}\left(\iota_{n}\right)\right\}
$$

and

$$
\pi_{n+1}\left(M\left(\mathbb{Z}_{p}, n\right)\right) \cong\left\{\begin{array}{cl}
0 & \text { if } p=\text { odd } \\
\mathbb{Z}_{2}\left\{i_{\sharp}\left(\eta_{n}\right)\right\} & \text { if } p=\text { even. }
\end{array}\right.
$$

2. Cohomotopy groups $\pi^{n+i-3}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$:

Table 1

	$i \leq 0$	$i=1$	$i=2$	$i=3$	$i=4$
$p \equiv 1(\bmod 2)$	0	\mathbb{Z}_{p}	0	0	$\mathbb{Z}_{(p, 24)}$
$p \equiv 0(\bmod 4)$	0	\mathbb{Z}_{p}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{(p, 24)}$
$p \equiv 2(\bmod 4)$	0	\mathbb{Z}_{p}	\mathbb{Z}_{2}	\mathbb{Z}_{4}	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{(p, 24)}$
Generators	-	$\iota_{n} \circ q$	$\eta_{n} \circ q$	$\bar{\eta}_{n}, \eta_{n}^{2} \circ q$	$\eta_{n} \circ \bar{\eta}, \nu_{n} \circ q$

3. The set of homotopy classes $\left[M\left(\mathbb{Z}_{p}, n\right), M\left(\mathbb{Z}_{p}, n\right)\right]$:

TAble 2

	$p \equiv 1(\bmod 2)$	$p \equiv 2(\bmod 4)$	$p \equiv 0(\bmod 4)$
$\left[M\left(\mathbb{Z}_{p}, n\right), M\left(\mathbb{Z}_{p}, n\right)\right]$	\mathbb{Z}_{p}	$\mathbb{Z}_{2 p}$	$\mathbb{Z}_{p} \oplus \mathbb{Z}_{2}$
Generators	1_{X}	1_{X}	$1_{X}, i \circ \eta_{n} \circ q$

3. Self-homotopy equivalences that induce the identity on co-homotopy groups

In this section, we study the properties of the sets $\mathcal{E}_{k}^{\sharp}(X)$. We recall

$$
\mathcal{E}_{k}^{\sharp}(X)=\mathcal{E}(X) \cap[X, X]_{k}^{\sharp},
$$

where

$$
[X, X]_{k}^{\sharp}=\left\{f \in[X, X] \mid g \circ f \sim g \text { for each } g: X \rightarrow S^{n}, \text { for all } n \geq k\right\} .
$$

Equivalently,

$$
\mathcal{E}_{k}^{\sharp}(X)=\left\{f \in \mathcal{E}(X) \mid f^{\sharp n}=i d_{\pi^{n}(X)} \text { on } \pi^{n}(X) \text { for } n \geq k\right\} .
$$

This definition indicates that $\mathcal{E}_{m}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X)$ for $n \geq m$. Hence, we obtain a chain of subsets as follows:

$$
\begin{equation*}
\mathcal{E}(X) \supseteq \cdots \supseteq \mathcal{E}_{n}^{\sharp}(X) \supseteq \mathcal{E}_{n-1}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_{1}^{\sharp}(X) . \tag{3.1}
\end{equation*}
$$

Proposition 3.1. $\mathcal{E}_{k}^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$.
Proof. Let $f, g \in \mathcal{E}_{k}^{\sharp}(X)$ and \bar{g} be the homotopy inverse map of g. Because $g \circ \bar{g}=i d_{X}$ and $\bar{g} \circ g=i d_{X}$,

$$
i d_{\pi^{k}(X)}=(g \circ \bar{g})^{\sharp k}=\bar{g}^{\sharp k} \circ g^{\sharp k}=\bar{g}^{\sharp k} .
$$

Thus,

$$
(f \circ \bar{g})^{\sharp k}=\bar{g}^{\sharp k} \circ f^{\sharp k}=\bar{g}^{\sharp k}=i d_{\pi^{k}(X)} .
$$

Hence, $f \circ \bar{g} \in \mathcal{E}_{k}^{\sharp}(X)$. Consequently, $\mathcal{E}_{k}^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$.

Lemma 3.2. If X is a finite $C W$ complex, then there exists a positive integer N such that $\left[X, S^{N}\right]=0$.

Proof. Let $\operatorname{dim}(X)=m<\infty$. We choose N such that $N>m$. If $f \in\left[X, S^{N}\right]$, then $f(X) \subseteq\left(S^{N}\right)_{m}$ by the cellular approximation theorem, where $\left(S^{N}\right)_{m}$ is m-skeleton of S^{N}. Because $S^{N}=e^{0} \cup e^{N},\left(S^{N}\right)_{m}=e^{0}$. Thus $f=0$ and consequently, $\left[X, S^{N}\right]=0$.

Theorem 3.3. If X is a finite $C W$ complex, then there are at most a finite number of distinguishing subgroups $\mathcal{E}_{k}^{\sharp}(X)$.

Proof. Let $m<\infty$ be the dimension of X. By definition of $\mathcal{E}_{k}^{\sharp}(X)$, we see that

$$
\mathcal{E}(X) \supseteq \cdots \supseteq \mathcal{E}_{n}^{\sharp}(X) \supseteq \mathcal{E}_{n-1}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_{1}^{\sharp}(X)
$$

By Lemma 3.2, $\left[X, S^{m+i}\right]=0$ for $i=1,2, \ldots$ Hence $\mathcal{E}(X)=\mathcal{E}_{m+1}^{\sharp}(X)$. Consequently, we have the following finite chain of subsets:

$$
\mathcal{E}(X)=\mathcal{E}_{m+1}^{\sharp}(X) \supseteq \mathcal{E}_{m}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_{n}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_{1}^{\sharp}(X)
$$

Next, we consider abelian groups G_{1} and G_{2} and Moore spaces $M_{1}=$ $M\left(G_{1}, n_{1}\right)$ and $M_{2}=M\left(G_{2}, n_{2}\right)$. Let $X=M_{1} \vee M_{2}$. We denote by i_{j} : $M_{j} \rightarrow X$ the inclusion and by $q_{j}: X \rightarrow M_{j}$ the projection, where $j=1,2$. If $f: X \rightarrow X$, then we define $f_{j k}: M_{k} \rightarrow M_{j}$ by $f_{j k}=q_{j} \circ f \circ i_{k}$ for $j, k=1,2$.

By Proposition 2.1, let $X=M_{1} \vee M_{2}$ then

$$
[X, X]=\left[M_{1}, M_{1}\right] \oplus\left[M_{1}, M_{2}\right] \oplus\left[M_{2}, M_{1}\right] \oplus\left[M_{2}, M_{2}\right] .
$$

By [3, Proposition 2.6], the function θ which assigns to each $f \in[X, X]$, the 2×2 matrix

$$
\theta(f)=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

where $f_{j k} \in\left[M_{k}, M_{j}\right]$, is a bijection. In addition,
(1) $\theta(f+g)=\theta(f)+\theta(g)$, so θ is an isomorphism $[X, X] \rightarrow \bigoplus_{j, k=1,2}\left[M_{k}, M_{j}\right]$.
(2) $\theta(f g)=\theta(f) \theta(g)$, where $f g$ denotes composition in $[X, X]$ and $\theta(f) \theta(g)$ denotes matrix multiplication.

Further, [3] also introduced the forms of the homomorphism induced by f on homotopy, homology, and cohomology groups, respectively.

Now, we determine the form of the homomorphism induced by f on cohomotogy groups.

Proposition 3.4. For any $f \in[X, X]$, we have

$$
f^{\sharp k}\left(\gamma_{1}, \gamma_{2}\right)=\left(f_{11}^{\sharp k}\left(\gamma_{1}\right)+f_{21}^{\sharp k}\left(\gamma_{2}\right), f_{12}^{\sharp k}\left(\gamma_{1}\right)+f_{22}^{\sharp k}\left(\gamma_{2}\right)\right),
$$

where $\gamma_{1} \in \pi^{k}\left(M_{1}\right)$ and $\gamma_{2} \in \pi^{k}\left(M_{2}\right)$.

Proof. For any $f \in[X, X]$, we identify that

$$
f=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

Thus, f induces the homomorphism $f^{\sharp k}$ on cohomotopy groups as follows:

$$
f^{\sharp k}=\left(\begin{array}{ll}
f_{11}^{\sharp k} & f_{12}^{\sharp k} \\
f_{21}^{\sharp k} & f_{22}^{\sharp k}
\end{array}\right) .
$$

Because $\pi^{k}(X)=\pi^{k}\left(M_{1}\right) \oplus \pi^{k}\left(M_{2}\right)$, we are able to identify $\gamma \in \pi^{k}(X)$ as $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$, for some $\gamma_{i} \in \pi^{k}\left(M_{i}\right)$. Then

$$
\begin{aligned}
f^{\sharp k}(\gamma) & =\gamma f=\left(\gamma_{1}, \gamma_{2}\right)\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right) \\
& =\left(\gamma_{1} f_{11}+\gamma_{2} f_{21}, \gamma_{1} f_{12}+\gamma_{2} f_{22}\right) \\
& =\left(f_{11}^{\sharp k}\left(\gamma_{1}\right)+f_{21}^{\sharp k}\left(\gamma_{2}\right), f_{12}^{\sharp k}\left(\gamma_{1}\right)+f_{22}^{\sharp k}\left(\gamma_{2}\right)\right) .
\end{aligned}
$$

Proposition 3.5. If $f \in \mathcal{E}_{k}^{\sharp}(X)$, then

$$
f^{\sharp k}=\left(\begin{array}{cc}
1_{\pi^{k}\left(M_{1}\right)} & 0 \tag{3.2}\\
0 & 1_{\pi^{k}\left(M_{2}\right)}
\end{array}\right) .
$$

Proof. Because f induces the identity on $\pi^{k}(X), f^{\sharp k}=i d_{\pi^{k}(X)}=1_{X}^{\sharp k}$, where $1_{X} \in[X, X]$ is the identity map. As $1_{X}=\left(\begin{array}{cc}1_{M_{1}} & 0 \\ 0 & 1_{M_{2}}\end{array}\right)$, we have

$$
f^{\sharp k}=1_{X}^{\sharp k}=\left(\begin{array}{cc}
1_{\pi^{k}\left(M_{1}\right)} & 0 \\
0 & 1_{\pi^{k}\left(M_{2}\right)}
\end{array}\right) .
$$

Here, we review the group of self homotopy equivalences of Moore space. Let p be a positive integer. In [11], Sieradski proved the following result by using the universal coefficient theorem for homotopy:

$$
\mathcal{E}\left(M\left(\mathbb{Z}_{p}, n\right)\right) \cong \begin{cases}\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}^{*} & n=2 \\ \mathbb{Z}_{(2, p)} \rtimes \mathbb{Z}_{p}^{*} & n \geq 3\end{cases}
$$

where \mathbb{Z}_{p}^{*} is the automorphism group of \mathbb{Z}_{p}.
Our computations require us to determine the definite forms of elements in $\mathcal{E}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$ and we use the concept of the self-closeness number introduced in [5] for this purpose. Because the Moore space of type (G, n) has the self closeness number n by [5, Corollary 3], $\mathcal{A}_{\sharp}^{n}\left(M\left(\mathbb{Z}_{p}, n\right)\right)=\mathcal{E}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$ by [5, Definition 2.1 or Theorem 4], where $\mathcal{A}_{\sharp}^{n}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$ is the set of homotopy classes of self-maps of $M\left(\mathbb{Z}_{p}, n\right)$ that induce an automorphism of $\pi_{i}(X)$ for $i=0,1, \ldots, n$. To determine the definite forms of elements in $\mathcal{E}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$, we compute $\mathcal{A}_{\sharp}^{n}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$ rather than $\mathcal{E}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$.

Consider the mapping cone sequence

$$
S^{n} \xrightarrow{p} S^{n} \xrightarrow{i} S^{n} \cup_{p} e^{n+1} \xrightarrow{\pi} S^{n+1} \xrightarrow{p} S^{n+1},
$$

where p is a map of degree p, i is the inclusion and π is the quotient map.
Theorem 3.6. Let $X=M\left(\mathbb{Z}_{p}, n\right)$ be a Moore space. Then we have

$$
\mathcal{A}_{\sharp}^{n}(X)= \begin{cases}\left\{k \cdot 1_{X} \mid(k, p)=1\right\} & p \equiv 1(\bmod 2), \\ \left\{\ell \cdot i \circ \eta_{n} \circ \pi+k \cdot 1_{X} \mid(k, p)=1\right\} & p \equiv 0(\bmod 4), \\ \left\{k \cdot 1_{X},(k+p) \cdot 1_{X} \mid(k, p)=1\right\} & p \equiv 2(\bmod 4) .\end{cases}
$$

Proof. We first note that $\pi_{n}(X) \cong \mathbb{Z}_{p}\left\{i_{\sharp}\left(\iota_{n}\right)\right\}$.
Suppose that p is odd. Then $[X, X]=\mathbb{Z}_{p}\left\{1_{X}\right\}$. Moreover, we have

$$
1_{X \sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=1_{X} \circ i \circ \iota_{n}=i_{\sharp}\left(\iota_{n}\right) .
$$

Thus, $\left(k \cdot 1_{X}\right)_{\sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=k \cdot\left(i_{\sharp}\left(\iota_{n}\right)\right)$. It follows that

$$
\mathcal{A}_{\sharp}^{n}(X)=\left\{k \cdot 1_{X} \mid(k, p)=1\right\}=\mathbb{Z}_{p}^{*} .
$$

Suppose that $p \equiv 0(\bmod 4)$. In this case,

$$
[X, X]=\mathbb{Z}_{2} \oplus \mathbb{Z}_{p}\left\{i \circ \eta_{n} \circ \pi, 1_{X}\right\}
$$

Because $1_{X \sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=i_{\sharp}\left(\iota_{n}\right)$ and $\left(i \circ \eta_{n} \circ \pi\right)_{\sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=i \circ \eta_{n} \circ \pi \circ i \circ \iota_{n}=0$, we have

$$
\left(\ell \cdot\left(i \circ \eta_{n} \circ \pi\right)+k \cdot 1_{X}\right)_{\sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=\left(k \cdot 1_{X}\right)_{\sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=k \cdot\left(i_{\sharp}\left(\iota_{n}\right)\right)
$$

for $\ell \in \mathbb{Z}_{2}$ and $k \in \mathbb{Z}_{p}$. Therefore

$$
\mathcal{A}_{\sharp}^{n}(X)=\left\{\ell \cdot\left(i \circ \eta_{n} \circ \pi\right)+k \cdot 1_{X} \mid(k, p)=1\right\} .
$$

Suppose that $p \equiv 2(\bmod 4)$. In this case, we have $[X, X]=\mathbb{Z}_{2 p}\left\{1_{X}\right\}$. As $k \cdot 1_{X \sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=k \cdot i_{\sharp}\left(\iota_{n}\right)$ for $0<k \leq p$ and $(p+k) \cdot 1_{X \sharp}\left(i_{\sharp}\left(\iota_{n}\right)\right)=k \cdot i_{\sharp}\left(\iota_{n}\right)$ for $0<k \leq p$, we have
$\mathcal{A}_{\sharp}^{n}(X)=\left\{k \cdot 1_{X} \mid(k, p)=1,1<k \leq p\right\} \cup\left\{(p+k) \cdot 1_{X} \mid(k, p)=1,0<k<p\right\}$.

4. Computation of $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$

In this section, we compute $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$ and determine their generators for $k=n+1, n$, and $n-1$. Throughout this section, we let $X=M\left(\mathbb{Z}_{p}, n\right)$.

Theorem 4.1. For $\mathcal{E}_{n+1}^{\sharp}(X)$, we have the following table:

	p odd	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n+1}^{\sharp}(X)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
generators	1_{X}	$\ell i \circ \eta_{n} \circ q \oplus 1_{X}$	$(\ell+1) 1_{X}$

Proof. Because $\pi^{k}(X)=0$ for $k>n+1$ by Theorem 3.3, it is sufficient to consider the $(n+1)$-th cohomotopy group of X. From Table $1, \pi^{n+1}(X)=$ $\mathbb{Z}_{p}\left\{\iota_{n+1} \circ q\right\}$.

Case 1. Let p be odd.

By Theorem 3.6, for each $f \in \mathcal{E}(X), f=k 1_{X}$ for some k such that $0 \leq k \leq$ $p-1$ and $(k, p)=1$. Thus, we have

$$
f^{\sharp n+1}\left(\iota_{n+1} \circ \pi\right)=\iota_{n+1} \circ \pi \circ\left(k 1_{X}\right)=k\left(\iota_{n+1} \circ \pi \circ 1_{X}\right)=k\left(\iota_{n+1} \circ \pi\right) .
$$

Therefore, to ensure that $f^{\sharp n+1}=1_{\pi_{n+1}}$ holds, k is require to be 1 . Hence $\mathcal{E}_{n+1}^{\sharp}(X) \cong 1\left\{1_{X}\right\}$.

Case 2. Let $p \equiv 0(\bmod 2)$.
By Theorem 3.6, for each $f \in \mathcal{E}(X), f=\ell i \circ \eta_{n} \circ \pi \oplus k 1_{X}$, for some $\ell=0,1$, where k is an integer such that $0 \leq k \leq p-1$ and $(k, p)=1$. Thus, we have

$$
\begin{aligned}
f^{\sharp n+1}\left(\iota_{n+1} \circ \pi\right) & =\iota_{n+1} \circ \pi\left(\ell i \circ \eta_{n} \circ \pi \oplus k 1_{X}\right) \\
& =\ell \iota_{n+1} \circ \pi \circ i \circ \eta_{n} \circ \pi \oplus k \iota_{n+1} \circ \pi \circ 1_{X} \\
& =k \iota_{n+1} \circ \pi
\end{aligned}
$$

because $q \circ i$ is homotopic to the constant map. Thus k is require to be 1 and $\ell=0$ or 1 to ensure that $f^{\sharp n+1}=1_{\pi_{n+1}}$ holds. Hence

$$
\mathcal{E}_{n+1}^{\sharp}(X) \cong \mathbb{Z}_{2}\left\{\ell i \circ \eta_{n} \circ q \oplus 1_{X} \mid \ell=0,1\right\} .
$$

Case 3. Let $p \equiv 2(\bmod 4)$.

By Theorem 3.6, for each $f \in \mathcal{E}(X), f=(k+\ell) 1_{X}$ for some k and ℓ such that $0 \leq k \leq p-1,(k, p)=1$ and $\ell=0, p$. Thus, we have

$$
f^{\sharp n+1}\left(\iota_{n+1} \circ \pi\right)=(k+\ell)\left(\iota_{n+1} \circ \pi \circ 1_{X}\right)=(k+\ell) \iota_{n+1} \circ \pi .
$$

Thus k is require to be 1 and $\ell=0$ or p to ensure that $f^{\sharp n+1}=1_{\pi_{n+1}}$ holds. Hence,

$$
\mathcal{E}_{n+1}^{\sharp}(X) \cong \mathbb{Z}_{2}\left\{(\ell+1) 1_{X} \mid \ell=0, p\right\} .
$$

Theorem 4.2. For $\mathcal{E}_{n}^{\sharp}(X)$, we have the following table:

	p odd	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n}^{\sharp}(X)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
generators	1_{X}	$1_{X} \oplus \ell i \circ \eta_{n} \circ \pi$	$(\ell+1) 1_{X}$

Proof. We first note that $\mathcal{E}_{n}^{\sharp}(X) \subseteq \mathcal{E}_{n+1}^{\sharp}(X)$. From Table 1,

$$
\pi^{n}(X)= \begin{cases}0 & p \equiv 1(\bmod 2) \\ \mathbb{Z}_{2}\left\{\eta_{n} \circ \pi\right\} & p \equiv 0(\bmod 2)\end{cases}
$$

Case 1. Let p be odd.
By Theorem 4.1, $\mathcal{E}_{n}^{\sharp}(X) \subseteq \mathcal{E}_{n+1}^{\sharp}(X) \cong 1$.
Case 2. Let $p \equiv 0(\bmod 4)$.
By Theorem 4.1, for each $f \in \mathcal{E}(X)$, we have $f=\ell i \circ \eta_{n} \circ \pi \oplus 1_{X}$ for $\ell=0,1$. Thus, we have

$$
\begin{aligned}
f^{\sharp n}\left(\eta_{n} \circ \pi\right) & =\eta_{n} \circ \pi \circ\left(\ell i \circ \eta_{n} \circ \pi \oplus 1_{X}\right) \\
& =\ell \eta_{n} \circ \pi \circ i \circ \eta_{n} \circ \pi \oplus \eta_{n} \circ \pi \circ 1_{X} \\
& =\eta_{n} \circ \pi
\end{aligned}
$$

because $\pi \circ i$ is homotopic to the constant map. Thus for any $\ell=0,1, f^{\sharp n}=1_{\pi_{n}}$ holds. Hence,

$$
\mathcal{E}_{n}^{\sharp}(X) \cong \mathbb{Z}_{2}\left\{\ell i \circ \eta_{n} \circ q \oplus 1_{X} \mid \ell=0,1\right\} .
$$

Case 3. Let $p \equiv 2(\bmod 4)$.
By Theorem 4.1, for each $f \in \mathcal{E}(X), f=(\ell+1) 1_{X}$, for $\ell=0, p$. Thus, we have

$$
f^{\sharp n}\left(\eta_{n} \circ \pi\right)=(\ell+1)\left(\eta_{n} \circ \pi \circ 1_{X}\right)=(\ell+1) \eta_{n} \circ \pi .
$$

Therefore, for any $\ell=0, p, f^{\sharp n}=1_{\pi_{n}}$ holds. Hence,

$$
\mathcal{E}_{n}^{\sharp}(X) \cong \mathbb{Z}_{2}\left\{(1+\ell) 1_{X} \mid \ell=0, p\right\} .
$$

Theorem 4.3. If $n>3$, then $\mathcal{E}_{n-1}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)=1\left\{1_{M\left(\mathbb{Z}_{p}, n\right)}\right\}$.
Proof. First we note that $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X)$ and

$$
\pi^{n-1}(X)= \begin{cases}0 & p: \text { odd } \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\bar{\eta}_{n-1}, \eta_{n-1}^{2} \circ q\right\} & p \equiv 0(\bmod 4) \\ \mathbb{Z}_{4}\left\{\eta_{n-1}^{2} \circ q\right\} & p \equiv 2(\bmod 4)\end{cases}
$$

by Table 1 .
In case that p is odd, it is clear because $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X) \cong 1$ by Theorem 4.2.

Suppose $p \equiv 0(\bmod 4)$. By Theorem 4.2, for each $f \in \mathcal{E}(X), f=\ell i \circ \eta_{n} \circ$ $q \oplus 1_{X}$ for $\ell=0,1$. Thus, we have

$$
\begin{aligned}
f^{\sharp n-1}\left(\bar{\eta}_{n-1} \oplus \eta_{n-1}^{2} \circ q\right)= & \left(\bar{\eta}_{n-1} \oplus \eta_{n-1}^{2} \circ q\right) \circ\left(\ell i \circ \eta_{n} \circ q \oplus 1_{X}\right) \\
= & \bar{\eta}_{n-1} \circ\left(\ell i \circ \eta_{n} \circ q \oplus 1_{X}\right) \\
& \oplus \eta_{n-1}^{2} \circ q \circ\left(\ell i \circ \eta_{n} \circ q \oplus 1_{X}\right) \\
= & \left(\ell \bar{\eta}_{n-1} \circ i \circ \eta_{n} \circ q \oplus \bar{\eta}_{n-1} \circ 1_{X}\right) \\
& +\left(\ell \eta_{n-1}^{2} \circ q \circ i \circ \eta_{n} \circ q \oplus \eta_{n-1}^{2} \circ q \circ 1_{X}\right) \\
= & \left(\ell \eta_{n-1} \circ \eta_{n} \circ q \oplus \bar{\eta}_{n-1}\right)+\left(\eta_{n-1}^{2} \circ q \oplus 0\right) \\
= & (\ell+1) \eta_{n-1}^{2} \circ q \oplus \bar{\eta}_{n-1}
\end{aligned}
$$

because $q \circ i$ is homotopic to the constant map.
For $f^{\sharp n-1}=1_{\pi_{n-1}}$ to be valid, $1+\ell=1$; thus $\ell=0$. Hence, $\mathcal{E}_{n-1}^{\sharp}(X) \cong$ $1\left\{1_{X}\right\}$.

Suppose $p \equiv 2(\bmod 4)$. By Theorem 4.2, for each $f \in \mathcal{E}(X), f=(\ell+1) 1_{X}$ for $\ell=0, p$. Thus, we have

$$
f^{\sharp n-1}\left(\eta_{n-1}^{2}\right)=(\ell+1) \eta_{n-1}^{2} \circ q \circ 1_{X}=(\ell+1) \eta_{n-1}^{2} \circ q .
$$

If $\ell=p$, then $(\ell+1) \eta_{n-1}^{2} \circ q=3 \eta_{n-1}^{2} \circ q \neq \eta_{n-1}^{2} \circ q$ because $\pi^{n-1}(X)=$ \mathbb{Z}_{4}. Thus, to ensure that $f^{\sharp n-1}=1_{\pi_{n-1}}$ holds, ℓ is require to be 0 . Hence $\mathcal{E}_{n-1}^{\sharp}(X) \cong 1\left\{1_{X}\right\}$.
Theorem 4.4. For $X=M\left(\mathbb{Z}_{p}, 3\right)$, we have the following table:

	p odd	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n-1}^{\sharp}(X)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
generators	1_{X}	$1_{X} \oplus i \circ \eta_{3} \circ q$	$(p+1) 1_{X}$

Proof. Based on the Puppe Sequence, we have

$$
\pi^{2}(X)= \begin{cases}0 & p \equiv 1(\bmod 2) \\ \mathbb{Z}_{2}\left\{\eta_{2}^{2} \circ q\right\} & p \equiv 0(\bmod 2)\end{cases}
$$

Case 1. Let p be odd.
By Theorem 4.2, $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X) \cong 1$.
Case 2. Let $p \equiv 0(\bmod 4)$.
By Theorem 3.6, for each $f \in \mathcal{E}(X), f=k 1_{X} \oplus \ell i \circ \eta_{n} \circ \pi$ for some k and ℓ such that $0 \leq k \leq p-1,(k, p)=1$ and $\ell=0,1$. Thus we have

$$
\begin{aligned}
f^{\sharp n-1}\left(\eta_{2}^{2} \circ \pi\right) & =\left(\eta_{2}^{2} \circ \pi\right) \circ\left(k 1_{X} \oplus \ell i \circ \eta_{3} \circ \pi\right) \\
& =k \eta_{2}^{2} \circ \pi \circ 1_{X} \oplus \ell \eta_{2}^{2} \circ \pi \circ i \circ \eta_{3} \circ \pi \\
& =k \eta_{2}^{2} \circ \pi
\end{aligned}
$$

because $\pi \circ i$ is homotopic to the constant map. Thus, for $f^{\sharp n-1}=1_{\pi_{n-1}}$ to hold, k is required to be 1 . Hence,

$$
\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_{2}\left\{1_{X} \oplus \ell i \circ \eta_{3} \circ q \mid \ell=0,1\right\} .
$$

Case 3. Let $p \equiv 2(\bmod 4)$.
By Theorem 3.6, for each $f \in \mathcal{E}(X), f=(k+\ell) 1_{X}$ for some k and l such that $0 \leq k \leq p-1,(k, p)=1$ and $\ell=0, p$. Thus, we have

$$
f^{\sharp n-1}\left(\eta_{2}^{2} \circ q\right)=(k+\ell) \eta_{2}^{2} \circ q \circ 1_{X}=(k+\ell) \eta_{2}^{2} \circ q .
$$

Therefore, to ensure that $f^{\sharp n-1}=1_{\pi_{n-1}}$ holds, k is required to be 1 . Hence,

$$
\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_{2}\left\{(\ell+1) 1_{X} \mid \ell=0, p\right\} .
$$

5. Computation of $\mathcal{E}_{k}^{\sharp}\left(C\left(\mathbb{Z}_{p}, n\right)\right)$

In this section, we compute $\mathcal{E}_{k}^{\sharp}\left(C\left(\mathbb{Z}_{p}, n\right)\right)$ and determine their generators for $k=n, n-1$ and $n-2$. Throughout this section, we let $X=C\left(\mathbb{Z}_{p}, n\right)$ and $M_{2}=M\left(\mathbb{Z}_{p}, n-1\right)$.

First of all, we determine the generators of $[X, X]$ and $\left[X, S^{n}\right]$.
It is well known that

$$
C\left(\mathbb{Z}_{p}, n\right)=M(\mathbb{Z}, n) \vee M\left(\mathbb{Z}_{p}, n-1\right)=S^{n} \vee M\left(\mathbb{Z}_{p}, n-1\right)
$$

for $n>3$. Thus we have

$$
[X, X] \cong\left[S^{n}, X\right] \oplus\left[M_{2}, X\right]
$$

and by Proposition 2.1,

$$
[X, X] \cong\left[X, S^{n}\right] \oplus\left[X, M_{2}\right] .
$$

Consequently,

$$
[X, X] \cong\left[S^{n}, S^{n}\right] \oplus\left[M_{2}, S^{n}\right] \oplus\left[S^{n}, M_{2}\right] \oplus\left[M_{2}, M_{2}\right]
$$

In [3], we have

$$
\mathcal{E}(X)=\mathcal{E}\left(S^{n}\right) \oplus\left[M_{2}, S^{n}\right] \oplus\left[S^{n}, M_{2}\right] \oplus \mathcal{E}\left(M_{2}\right)
$$

Consider the mapping cone sequence

$$
S^{n} \xrightarrow{p} S^{n} \xrightarrow{i} M\left(\mathbb{Z}_{p}, n\right) \xrightarrow{\pi} S^{n+1} \xrightarrow{p} S^{n+1}
$$

and let $i_{1}: S^{n} \rightarrow X$ and $i_{2}: M_{2} \rightarrow X$ be inclusion maps and $q_{1}: X \rightarrow S^{n}$ and $q_{2}: X \rightarrow M_{2}$ be projection maps.

Then, from Table 1 and Theorem 3.6, we have the following lemmas.
Lemma 5.1. If $i_{1}: S^{n} \rightarrow X$ and $i_{2}: M_{2} \rightarrow X$ are inclusion maps and $q_{1}: X \rightarrow S^{n}$ and $q_{2}: X \rightarrow M_{2}$ are projection maps, then we have:

$p \equiv 1(\bmod 2)$	$[X, X]$	$\mathbb{Z} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$
	Generators	$i_{1} \circ \iota_{n} \circ q_{1}, i_{1} \circ \iota_{n} \circ \pi \circ q_{2}, i_{1} \circ 1_{M_{2}} \circ q_{2}$
$p \equiv 0(\bmod 4)$	$[X, X]$	$\mathbb{Z} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{p}$
	Generators	$i_{1} \circ \iota_{n} \circ q_{1}, i_{1} \circ \iota_{n} \circ \pi \circ q_{2}$,
		$i_{2} \circ i \circ \eta_{n-1} \circ q_{1}, i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2}, i_{2} \circ 1_{M_{2}} \circ q_{2}$
$p \equiv 2(\bmod 4)$	$[X, X]$	$\mathbb{Z} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 p}$
	Generators	$i_{1} \circ \iota_{n} \circ q_{1}, i_{1} \circ \iota_{n} \circ \pi \circ q_{2}, i_{2} \circ i \circ \eta_{n-1} \circ q_{1}, i_{2} \circ 1_{M_{2}} \circ q_{2}$

As $\mathcal{E}\left(S^{n}\right) \cong \mathbb{Z}_{2}$, we have the following lemma.
Lemma 5.2. $\mathcal{E}(X)$ is isomorphic to

$p \equiv 1(\bmod 2)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{p} \oplus\left(\mathbb{Z}_{p}^{*}\right)$
$p \equiv 0(\bmod 4)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{2} \rtimes \mathbb{Z}_{p}^{*}\right)$
$p \equiv 2(\bmod 4)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{2} \rtimes \mathbb{Z}_{p}^{*}\right)$

By Proposition 2.1,

$$
\pi^{r}(X)=\pi^{r}\left(S^{n}\right) \oplus \pi^{r}\left(M\left(\mathbb{Z}_{p}, n-1\right)\right)
$$

Thus, we have the following lemma from Table 1,
Lemma 5.3. For $\pi^{r}(X)$, we have the following table:

		$\pi^{r}(X)$	Generators
$r=n$		$\mathbb{Z} \oplus \mathbb{Z}_{p}$	$\iota_{n} \circ q_{1}, \iota_{n} \circ \pi \circ q_{2}$
$r=n-1$	$p \equiv 1(\bmod 2)$	\mathbb{Z}_{2}	$\eta_{n-1} \circ q_{1}$
	$p \equiv 0(\bmod 2)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\eta_{n-1} \circ q_{1}, \eta_{n-1} \circ \pi \circ q_{2}$
$r=n-2$	$p \equiv 1(\bmod 2)$	\mathbb{Z}_{2}	$\eta_{n-2}^{2} \circ q_{1}$
	$p \equiv 0(\bmod 4)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\eta_{n-2}^{2} \circ q_{1}, \eta_{n-2}^{2} \circ \pi \circ q_{2}, \bar{\eta}_{n} \circ q_{2}$
	$p \equiv 2(\bmod 4)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$	$\eta_{n-2}^{2} \circ q_{1}, \bar{\eta}_{n} \circ q_{2}$

Now, we compute $\mathcal{E}_{k}^{\sharp}(X)$ and determine their generators for $k=n, n-1$, and $n-2$.

Theorem 5.4. For $\mathcal{E}_{n}^{\sharp}(X)$, we have the following table:

	$p \equiv 1$	$(\bmod 2)$	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n}^{\sharp}(X)$	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	

Proof. Because $\pi^{k}(X)=0$ for $k>n$, it is sufficient to consider the case that $k=n$. From Lemma 5.3, $\pi^{n}(X)=\mathbb{Z} \oplus \mathbb{Z}_{p}\left\{\iota_{n} \circ q_{1}, \iota_{n} \circ \pi \circ q_{2}\right\}$. By Proposition 3.4, each $f \in \mathcal{E}(X)$ can be identified as

$$
f=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right) .
$$

Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right)=\left(\iota_{n} \circ q_{1}, \iota_{n} \circ \pi \circ q_{2}\right)$ be the generator.

Case 1. Let p be odd.

By Lemma 5.2, for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
& f_{11}=s i_{1} \circ \iota_{n} \circ q_{1}, \\
& f_{12}=t i_{1} \circ \iota_{n} \circ \pi \circ q_{2}, \\
& f_{21}=0, \\
& f_{22}=k i_{1} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for some k, s and t such that $0 \leq t \leq p-1,0 \leq k \leq p-1$ and $(k, p)=1$, $s=-1,1$. Thus we have

$$
\begin{aligned}
f_{11}^{\sharp n}\left(\gamma_{1}\right) & =\iota_{n} \circ q_{1} \circ s\left(i_{1} \circ \iota_{n} \circ q_{1}\right) \\
& =s \iota_{n} \circ q_{1} \circ i_{1} \circ \iota_{n} \circ q_{1}=s \iota_{n} \circ q_{1}, \\
f_{12}^{\sharp n}\left(\gamma_{1}\right) & =\iota_{n} \circ q_{1} \circ t\left(i_{1} \circ \iota_{n} \circ \pi \circ q_{2}\right) \\
& =t \iota_{n} \circ q_{1} \circ i_{1} \circ \iota_{n} \circ \pi \circ q_{2}=t \iota_{n} \circ \pi \circ q_{2}, \\
f_{22}^{\sharp n}\left(\gamma_{2}\right) & =\iota_{n} \circ \pi \circ q_{2} \circ\left(k i_{2} \circ 1_{M_{2}} \circ q_{2}\right)=k \iota_{n} \circ \pi \circ q_{2} .
\end{aligned}
$$

By Proposition 3.5, $s=1, t=0$ and $k=1$. Hence

$$
\mathcal{E}_{n}^{\sharp}(X) \cong 1\left\{\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
0 & i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right)\right\} .
$$

Case 2. $p \equiv 0(\bmod 4)$.
By Lemma 5.2, for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
& f_{11}=s i_{1} \circ \iota_{n} \circ q_{1}, \\
& f_{12}=t i_{1} \circ \iota_{n} \circ \pi \circ q_{2}, \\
& f_{21}=m i_{2} \circ i \circ \eta_{n-1} \circ q_{1}, \\
& f_{22}=\ell i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2} \oplus k i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for k, ℓ, m, s and t such that $0 \leq t \leq p-1,0 \leq k \leq p-1, m, \ell=0,1, s=-1,1$ and $(k, p)=1$. Thus we have

$$
\begin{aligned}
f_{11}^{\sharp n}\left(\gamma_{1}\right) & =\iota_{n} \circ q_{1} \circ s\left(i_{1} \circ \iota_{n} \circ q_{1}\right) \\
& =s \iota_{n} \circ q_{1} \circ i_{1} \circ \iota_{n} \circ q_{1}=s \iota_{n} \circ q_{1}, \\
f_{12}^{\sharp n}\left(\gamma_{1}\right) & =\iota_{n} \circ q_{1} \circ t\left(i_{1} \circ \iota_{n} \circ \pi \circ q_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =t \iota_{n} \circ q_{1} \circ i_{1} \circ \iota_{n} \circ q \circ q_{2}=t \iota_{n} \circ \pi \circ q_{2}, \\
f_{21}^{\sharp n}\left(\gamma_{2}\right) & =\iota_{n} \circ \pi \circ q_{2} \circ m\left(i_{2} \circ i \circ \eta_{n-1} \circ q_{1}\right) \\
& =m \iota_{n} \circ q \circ q_{2} \circ i_{2} \circ i \circ \eta_{n-1} \circ q_{1}=0, \\
f_{22}^{\sharp n}\left(\gamma_{2}\right) & =\iota_{n} \circ \pi \circ q_{2} \circ\left(\ell i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2} \oplus k i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
& =\ell \iota_{n} \circ \pi \circ q_{2} \circ i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2} \oplus k \iota_{n} \circ \pi \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2} \\
& =k \iota_{n} \circ \pi \circ q_{2}
\end{aligned}
$$

because $\pi \circ i$ is homotopic to the constant map.
By Proposition 3.5, $s=1, t=0, k=1$ and $m, \ell=0,1$. Hence

$$
\mathcal{E}_{n}^{\sharp}(X) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\left.\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
m i_{2} \circ i \circ \eta_{n-1} \circ q_{1} & \ell \alpha \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right) \right\rvert\, m, \ell=0,1\right\},
$$

where $\alpha=i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2}$.
Case 3. Let $p \equiv 2(\bmod 4)$.
By Lemma 5.2 , for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
& f_{11}=s i_{1} \circ \iota_{n} \circ q_{1}, \\
& f_{12}=t i_{1} \circ \iota_{n} \circ \pi \circ q_{2}, \\
& f_{21}=m i_{2} \circ i \eta_{n-1} \circ q_{1}, \\
& f_{22}=(k+\ell) i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for k, ℓ, m, s and t such that $0 \leq t \leq p-1,0 \leq k \leq p-1, m=0,1, s=-1,1$, $\ell=0, p$ and $(k, p)=1$. Thus we have

$$
\begin{aligned}
f_{11}^{\sharp n}\left(\gamma_{1}\right) & =\iota_{n} \circ q_{1} \circ s\left(i_{1} \circ \iota_{n} \circ q_{1}\right) \\
& =s \iota_{n} \circ q_{1} \circ i_{1} \circ \iota_{n} \circ q_{1}=s \iota_{n} \circ q_{1}, \\
f_{12}^{\sharp n}\left(\gamma_{1}\right) & =\iota_{n} \circ q_{1} \circ t\left(i_{1} \circ \iota_{n} \circ \pi \circ q_{2}\right) \\
& =t \iota_{n} \circ q_{1} \circ i_{1} \circ \iota_{n} \circ \pi \circ q_{2}=t \iota_{n} \circ \pi \circ q_{2}, \\
f_{21}^{\sharp n}\left(\gamma_{2}\right) & =\iota_{n} \circ q \circ q_{2} \circ m\left(i_{2} \circ i \eta_{n-1} \circ q_{1}\right) \\
& =m \iota_{n} \circ q \circ q_{2} \circ i_{2} \circ i \eta_{n-1} \circ q_{1}=0, \\
f_{22}^{\sharp n}\left(\gamma_{2}\right) & =\iota_{n} \circ \pi \circ q_{2} \circ(k+\ell)\left(i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
& =(k+\ell) \iota_{n} \circ \pi \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2}=(k+\ell) \iota_{n} \circ \pi \circ q_{2}
\end{aligned}
$$

because $\pi \circ i$ is homotopic to the constant map.
By Proposition 3.5, $s=1, t=0, k=1, \ell=0, p$ and $m=0,1$. Hence

$$
\begin{array}{r}
\mathcal{E}_{n}^{\sharp}(X) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
m i_{2} \circ i \circ \eta_{n-1} \circ q_{1} & (\ell+1) i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right)\right. \\
m=0,1 \text { and } \ell=0, p\} .
\end{array}
$$

Theorem 5.5. For $\mathcal{E}_{n-1}^{\sharp}(X)$, we have the following table:

	$p \equiv 1$	$(\bmod 2)$	$p \equiv 0(\bmod 4)$	$p \equiv 2(\bmod 4)$
$\mathcal{E}_{n-1}^{\sharp}(X)$	1	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	

Proof. From Lemma 5.3, we have

$$
\pi^{n-1}(X)= \begin{cases}\mathbb{Z}_{2}\left\{\eta_{n-1} \circ q_{1}\right\} & p \equiv 1(\bmod 2) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\eta_{n-1} \circ q_{1}, \eta_{n-1} \circ \pi \circ q_{2}\right\} & p \equiv 0(\bmod 2)\end{cases}
$$

Case 1. Let p be odd.
By Theorem 5.4, we have $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X) \cong 1$.
Case 2. Let $p \equiv 0(\bmod 4)$.
By Theorem 5.4, for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
& f_{11}=i_{1} \circ \iota_{n} \circ q_{1}, \\
& f_{12}=0, \\
& f_{21}=m i_{2} \circ i \circ \eta_{n-1} \circ q_{1}, \\
& f_{22}=\ell i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2} \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for $m, \ell=0,1$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22}; however, we have

$$
\begin{aligned}
f_{21}^{\sharp n-1}\left(\gamma_{2}\right) & =\eta_{n-1} \circ \pi \circ q_{2} \circ m\left(i_{2} \circ i \circ \eta_{n-1} \circ q_{1}\right) \\
& =m \eta_{n-1} \circ \pi \circ q_{2} \circ i_{2} \circ i \circ \eta_{n-1} \circ q_{1}=0, \\
f_{22}^{\sharp n-1}\left(\gamma_{2}\right) & =\eta_{n-1} \circ \pi \circ q_{2} \circ\left(\ell i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2} \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
& =\ell \eta_{n-1} \circ \pi \circ q_{2} \circ i_{2} \circ i \circ \eta_{n-1} \circ \pi \circ q_{2} \oplus \eta_{n-1} \circ \pi \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2} \\
& =\eta_{n-1} \circ \pi \circ q_{2}
\end{aligned}
$$

because $\pi \circ i$ is homotopic to the constant map.
By Proposition 3.5, $m, \ell=0,1$. Hence,

$$
\begin{array}{r}
\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
m i_{2} \circ i \circ \eta_{n-1} \circ q_{1} & \ell \alpha \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right)\right. \\
\ell=0,1 \text { and } m=0,1\},
\end{array}
$$

where $\alpha=i_{2} \circ i \circ \eta_{n-1} \circ q \circ q_{2}$.
Case 3. Let $p \equiv 2(\bmod 4)$
By Theorem 5.4, for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
& f_{11}=i_{1} \circ \iota_{n} \circ q_{1}, \\
& f_{12}=0, \\
& f_{21}=m i_{2} \circ i \eta_{n-1} \circ q_{1}, \\
& f_{22}=(1+\ell) i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for $m=0,1, \ell=0, p$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22}; however, we have

$$
f_{21}^{\sharp n-1}\left(\gamma_{2}\right)=\eta_{n-1} \circ \pi \circ q_{2} \circ m\left(i_{2} \circ i \eta_{n-1} \circ q_{1}\right)
$$

$$
\begin{aligned}
& =m \eta_{n-1} \circ \pi \circ q_{2} \circ i_{2} \circ i \eta_{n-1} \circ q_{1}=0, \\
f_{22}^{\sharp n-1}\left(\gamma_{2}\right) & =\eta_{n-1} \circ \pi \circ q_{2} \circ(1+\ell)\left(i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
& =(1+\ell) \eta_{n-1} \circ \pi \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2}=(1+\ell) \eta_{n-1} \circ \pi \circ q_{2}
\end{aligned}
$$

because $q \circ i$ is homotopic to the constant map.
By Proposition 3.5, $\ell=0, p$ and $m=0,1$. Hence

$$
\begin{array}{r}
\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
i_{2} \circ i \circ \eta_{n-1} \circ q_{1} & (\ell+1) i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right)\right. \\
\\
\ell=0, p \text { and } m=0,1\} .
\end{array}
$$

Theorem 5.6. $\mathcal{E}_{n-2}^{\sharp}\left(C\left(\mathbb{Z}_{p}, n\right)\right) \cong 1$.
Proof. From Theorem 5.3,

$$
\pi^{n-2}(X)= \begin{cases}\mathbb{Z}_{2}\left\{\eta_{n-2}^{2} \circ q_{1}\right\} & p \equiv 1(\bmod 2) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\left\{\eta_{n-2}^{2} \circ q_{1}, \eta_{n-2}^{2} \circ \pi \circ q_{2}, \bar{\eta}_{n} \circ q_{2}\right\} & p \equiv 0(\bmod 4) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}\left\{\eta_{n-2}^{2} \circ q_{1}, \bar{\eta}_{n} \circ q_{2}\right\} & p \equiv 2(\bmod 4)\end{cases}
$$

Case 1. Let p be odd. By Theorem 5.5, $\mathcal{E}_{n-2}^{\sharp}(X) \subseteq \mathcal{E}_{n-1}^{\sharp}(X) \cong 1$.
Case 2. Let $p \equiv 0(\bmod 4)$.
Then, the generator of $\pi^{n-2}(X)$ is

$$
\gamma=\left(\gamma_{1}, \gamma_{2}\right)=\left(\eta_{n-2}^{2} \circ q_{1}, \eta_{n-2}^{2} \circ \pi \circ q_{2} \oplus \bar{\eta}_{n} \circ q_{2}\right)
$$

By Theorem 5.5, for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
f_{11} & =i_{1} \circ \iota_{n} \circ q_{1} \\
f_{12} & =0 \\
f_{21} & =m i_{2} \circ i \circ \eta_{n-1} \circ q_{1} \\
f_{22} & =\ell \alpha \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for $m, \ell=0,1$ and $\alpha=i_{2} \circ i \circ \eta_{n-1} \circ q \circ q_{2}$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22}; however, we have

$$
\begin{aligned}
f_{21}^{\sharp n-2}\left(\gamma_{2}\right)= & \eta_{n-2}^{2} \circ \pi \circ q_{2} \oplus \bar{\eta}_{n} \circ q_{2} \circ m\left(i_{2} \circ i \circ \eta_{n-1} \circ q_{1}\right) \\
= & m \eta_{n-2}^{2} \circ \pi \circ q_{2} \circ i_{2} \circ i \circ \eta_{n-1} \circ q_{1} \oplus m \bar{\eta}_{n} \circ q_{2} \circ i_{2} \circ i \circ \eta_{n-1} \circ q_{1} \\
= & m \bar{\eta}_{n} \circ i \circ \eta_{n} \circ q_{1}=m \eta_{n-2} \eta_{n-1} \circ q_{1} \\
= & m \eta_{n-2}^{2} \circ q_{1}, \\
f_{22}^{\sharp n-2}\left(\gamma_{2}\right)= & \eta_{n-2}^{2} \circ \pi \circ q_{2} \oplus \bar{\eta}_{n} \circ q_{2} \circ\left(\ell \alpha \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
= & \eta_{n-2}^{2} \circ \pi \circ q_{2} \circ\left(\ell \alpha \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}\right)+\bar{\eta}_{n} \circ q_{2} \circ\left(\ell \alpha \oplus i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
= & \ell \eta_{n-2}^{2} \circ \pi \circ q_{2} \circ \alpha \oplus \eta_{n-2}^{2} \circ \pi \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2} \\
& +\ell \bar{\eta}_{n} \circ q_{2} \circ \alpha \oplus \bar{\eta}_{n} \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2} \\
= & \eta_{n-2}^{2} \circ \pi \circ q_{2}+\ell \bar{\eta}_{n} \circ i \eta_{n-1} \circ \pi \circ q_{2} \oplus \bar{\eta}_{n} \circ q_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\eta_{n-2}^{2} \circ \pi \circ q_{2}+\ell \eta_{n-2}^{2} \circ \pi \circ q_{2} \oplus \bar{\eta}_{n} \circ q_{2} \\
& =(1+\ell) \eta_{n-2}^{2} \circ \pi \circ q_{2} \oplus \bar{\eta}_{n} \circ q_{2}
\end{aligned}
$$

because $q \circ i$ is homotopic to the constant map and $\bar{\eta}_{n} \circ i \eta_{n-2}=\eta_{n-2}^{2}=$ $\eta_{n-2} \circ \eta_{n-1}$.

By Proposition 3.5, $\ell=0$ and $m=0$. Hence,

$$
\mathcal{E}_{n-2}^{\sharp}(X) \cong 1\left\{\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
0 & i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right)\right\} .
$$

Case 3. Let $p \equiv 2(\bmod 4)$.
Then the generator of $\pi^{n-2}(X)$ is $\gamma=\left(\gamma_{1}, \gamma_{2}\right)=\left(\eta_{n-2}^{2} \circ q_{1}, \bar{\eta}_{n} \circ q_{2}\right)$. By Theorem 5.5, for each $f \in \mathcal{E}(X)$, we have

$$
\begin{aligned}
& f_{11}=i_{1} \circ \iota_{n} \circ q_{1}, \\
& f_{12}=0, \\
& f_{21}=m i_{2} \circ i \eta_{n-1} \circ q_{1}, \\
& f_{22}=(1+\ell) i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{aligned}
$$

for $\ell=0, p$ and $m=0,1$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22}; however, we have

$$
\begin{aligned}
f_{21}^{\sharp n-2}\left(\gamma_{2}\right) & =\bar{\eta}_{n} \circ q_{2} \circ m\left(i_{2} \circ i \eta_{n-1} \circ q_{1}\right) \\
& =m \bar{\eta}_{n} \circ q_{2} \circ i_{2} \circ i \eta_{n-1} \circ q_{1}=m \eta_{n-2}^{2} \circ q_{1}, \\
f_{22}^{\sharp n-2}\left(\gamma_{2}\right) & =\bar{\eta}_{n} \circ q_{2} \circ(1+\ell)\left(i_{2} \circ 1_{M_{2}} \circ q_{2}\right) \\
& =(1+\ell) \bar{\eta}_{n} \circ q_{2} \circ i_{2} \circ 1_{M_{2}} \circ q_{2}=(1+\ell) \bar{\eta}_{n} \circ q_{2}
\end{aligned}
$$

because $\bar{\eta}_{n} \circ i \eta_{n-2}=\eta_{n-2} \circ \eta_{n-1}=\eta_{n-2}^{2}$.
If $\ell=p$, then $(1+p) \bar{\eta}_{n} \circ q_{2}=3 \bar{\eta}_{n} \circ q_{2} \neq \bar{\eta}_{n} \circ q_{2}$ because $\bar{\eta}_{n} \circ q_{2}$ has order 4 . Thus, by Proposition $3.5, \ell=0$ and $m=0$. Hence,

$$
\mathcal{E}_{n-2}^{\sharp}(X) \cong 1\left\{\left(\begin{array}{cc}
i_{1} \circ \iota_{n} \circ q_{1} & 0 \\
0 & i_{2} \circ 1_{M_{2}} \circ q_{2}
\end{array}\right)\right\} .
$$

References

[1] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. I, Osaka J. Math. 2 (1965), 71-115.
[2] M. Arkowitz, The group of self-homotopy equivalences - a survey, Groups of selfequivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990.
[3] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154.
[4] H. Choi and K. Lee, Certain self homotopy equivalences on wedge products on Moore spaces, Pacific J. Math. 272 (2014), no. 1, 35-57.
[5] , Certain numbers on the groups of self-homotopy equivalences, Topology Appl. 181 (2015), 104-111.
[6] B. Gray, Homotopy Theory, Academic Press, Inc., 1975.
[7] K. Lee, The groups of self pair homotopy equivalences, J. Korean Math. Soc. 43 (2006), no. 3, 491-506.
[8] J. Rutter, The group of homotopy self-equivalence classes of $C W$-complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 275-293.
[9] N. Sawashita, On the group of self-equivalences of the product spheres, Hiroshima Math. J. 5 (1975), 69-86.
[10] A. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.
[11] _, Stabilization of self-equivalences of the pesudoprojective spaces, Michigan. Math. J. 19 (1972), 109-119.
[12] H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ., 1962.
Ho Won Choi
Department of Mathematics
Korea University
Seoul 702-701, Korea
E-mail address: howon@korea.ac.kr
Kee Young Lee
Department of Mathematics
Korea University
Sejong 339-700, Korea
E-mail address: keyolee@korea.ac.kr
Hyung Seok Oh
Department of Mathematics
Korea University
Seoul 702-701, Korea
E-mail address: hyungseok@korea.ac.kr

[^0]: Received December 22, 2015.
 2010 Mathematics Subject Classification. Primary 55P10, 55Q05, 55Q55.
 Key words and phrases. self-homotopy equivalence, cohomotopy group, Moore space, coMoore space.

 This work was supported by a Korea University Grant.

