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SELF-HOMOTOPY EQUIVALENCES RELATED TO

COHOMOTOPY GROUPS

Ho Won Choi, Kee Young Lee, and Hyung Seok Oh

Abstract. Given a topological space X and a non-negative integer k,
we study the self-homotopy equivalences of X that do not change maps
from X to n-sphere Sn homotopically by the composition for all n ≥ k.

We denote by E
♯
k(X) the set of all homotopy classes of such self-homotopy

equivalences. This set is a dual concept of Ek
♯ (X), which has been studied

by several authors. We prove that ifX is a finite CW complex, there are at

most a finite number of distinguishing homotopy classes E
♯
k
(X), whereas

Ek
♯ (X) may not be finite. Moreover, we obtain concrete computations of

E
♯
k(X) to show that the cardinal of E

♯
k(X) is finite when X is either a

Moore space or co-Moore space by using the self-closeness numbers.

1. Introduction

Throughout this paper, all topological spaces are based and have the based
homotopy type of a CW-complex, and all maps and homotopies preserve base
points. For the spaces X and Y , we denote by [X,Y ] the set of homotopy
classes of maps from X to Y . No distinction is made between the notation of a
map X → Y and that of its homotopy class in [X,Y ]. Let Sn be the n-sphere.
Then, [Sn, Y ] is known as the n-th homotopy group of space Y , denoted by
πn(Y ) and [X,Sn] is referred to as the n-th cohomotopy group of X , denoted
by πn(X).

GivenX , we denote by E(X) the set of all homotopy classes of self-homotopy
equivalences of X . Then, E(X) is a subset of [X,X ] and has a group struc-
ture given by the composition of homotopy classes. E(X) has been studied
extensively by various authors, including Arkowitz [2], Maruyama [3], Lee [7],
Rutter [8], Sawashita [9], and Sieradski [10]. Moreover, several subgroups of
E(X) have also been studied, notably the subgroup Ek

♯ (X), which consists of

the elements of E(X) that induce the identity homomorphism on homotopy
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groups πi(X) for i = 0, 1, 2, . . . , k. In [3], Arkowitz and Maruyama introduced
and determined these subgroups for Moore spaces and co-Moore spaces using
the homological method. In [4], the second and third authors used homotopy
techniques to calculate these subgroups for the wedge products of Moore spaces.

Given a topological space X and a non-negative integer k, consider the self-
map f : X → X such that g ◦ f is homotopic to g for each g : X → Sn and

for each n ≥ k. We denote by [X,X ]♯k the set of all homotopy classes of such
self-maps of X , that is,

[X,X ]♯k = {f ∈ [X,X ] | g ◦ f ∼ g for each g : X → Sn, for all n ≥ k}.
This set has a monoid structure by composition.

We define

E♯
k(X) = E(X) ∩ [X,X ]♯k.

Then, it is easy to prove that E♯
k(X) is a subgroup of E(X) and has a lower

bound, whereas Ek
♯ (X) has an upper bound.

In this paper, we compute these subgroups of Moore spaces and co-Moore
spaces, by first showing that if X is a finite CW complex, then there are at

most a finite number of distinguishing subgroups E♯
k(X).

When G is an abelian group, we let M(G,n) denote the Moore space; i.e.,
the space in which G is a single non-vanishing homology group at the n-level.
We note that if n ≥ 3, then M(G,n) is characterized by

˜Hi(M(G,n)) ∼=
{

G if i = n

0 if i 6= n.

Furthermore, we let C(G,n) denote the co-Moore space of type (G,n) defined
by

˜Hi(C(G,n)) ∼=
{

G if i = n

0 if i 6= n.

Next, we compute E♯
k(X) for X = M(Zp, n) or X = C(Zp, n) to obtain the

following tables:

p odd p ≡ 0 (mod 4) p ≡ 2 (mod 4)

E♯
n+1(M(Zp, n)) 1 Z2 Z2

E♯
n(M(Zp, n)) 1 Z2 Z2

E♯
n−1(M(Zp, n)) 1 1 1

p odd p ≡ 0 (mod 4) p ≡ 2 (mod 4)

E♯
n(C(Zp, n)) 1 Z2 ⊕ Z2 Z2 ⊕ Z2

E♯
n−1(C(Zp, n)) 1 Z2 ⊕ Z2 Z2 ⊕ Z2

E♯
n−2(C(Zp, n)) 1 1 1

Henceforth, when a group G is generated by a set {a1, . . . , an}, then we
denote the group by G{a1, . . . , a2} or G = 〈a1, . . . , an〉. Moreover, when f :
X → Y is a map, f♯k : πk(X) → πk(Y ) and f ♯k : πk(Y ) → πk(X) denote the
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induced homomorphisms in k-th homotopy group and k-th cohomotopy group,
respectively.

2. Preliminaries

In this section, we review and summarize selected definitions and results
provided in [1, 3, 5, 12], knowledge of which would be useful when reading this
paper.

First, we summarize the concepts and results introduced in [5]. For any
non-negative integer n, An

♯ (X) consists of the homotopy classes of the self-map

of X that induce an automorphism from πi(X) to πi(X) for i = 0, 1, . . . , n.
Ak

♯ (X) is a submonoid of [X,X ] and always contains E(X). If n = ∞, we

briefly denote A∞
♯ (X) as A♯(X). If k < n, then An

♯ (X) ⊆ Ak
♯ (X); thus, we

have the following chain by inclusion:

E(X) ⊆ A♯(X) ⊆ · · · ⊆ A1
♯ (X) ⊆ A0

♯ (X) = [X,X ].

Definition 2.1. Let X be a CW complex. The self closeness number of X
is the minimum number n such that An

♯ (X) = E(X) and is denoted here by

NE(X). That is,

NE(X) = min{n | An
♯ (X) = E(X) for n ≥ 0}.

By [5, Theorem 1], the self-closeness number is a homotopy invariant. More-
over, if X is an n-connected space with dimension m and E(X) 6= [X,X ], then
we have n < NE(X) ≤ m by [5, Lemma 4 and Theorem 2].

Proposition 2.1 ([3]). If X is (k − 1)-connected, Y is (l − 1)-connected, and
further, if k, l ≥ 2, and dimP ≤ k + l − 1, then the projections X ∨ Y → X

and X ∨ Y → Y induce a bijection.

[P,X ∨ Y ] → [P,X ]⊕ [P, Y ].

By [12], the generators of some homotopy groups of spheres can be summa-
rized as follows.

i < 0 i = 0 i = 1 i = 2 i = 3 i = 4, 5
[Sn+i, Sn] 0 Z Z2 Z2 Z24 0
Generator ιn ηn η2n νn 0

Here, we note that for the Moore space M(Zp, n) = Sn ∪p e
n+1, there exists

a mapping cone sequence

Sn p−→ Sn i−−→ Sn ∪p e
n+1 π−−→ Sn+1 p−−→ Sn+1,

where p is a map of degree p, i is an inclusion and π is a quotient map. In [1],
Araki and Toda computed the homotopy groups, and cohomotopy groups of
M(Zp, n), and set of homotopy classes of self-maps on M(Zp, n). The results
can be summarized as follows.

1. Homotopy group πk(M(Zp, n)) for k = n, n+ 1:

πn(M(Zp, n)) ∼= Zp{i♯(ιn)}
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and

πn+1(M(Zp, n)) ∼=
{

0 if p = odd,
Z2{i♯(ηn)} if p = even.

2. Cohomotopy groups πn+i−3(M(Zp, n)):

Table 1

i ≤ 0 i = 1 i = 2 i = 3 i = 4
p ≡ 1 (mod 2) 0 Zp 0 0 Z(p,24)

p ≡ 0 (mod 4) 0 Zp Z2 Z2 ⊕ Z2 Z2 ⊕ Z(p,24)

p ≡ 2 (mod 4) 0 Zp Z2 Z4 Z2 ⊕ Z(p,24)

Generators - ιn ◦ q ηn ◦ q η̄n, η
2
n ◦ q ηn ◦ η̄, νn ◦ q

3. The set of homotopy classes [M(Zp, n),M(Zp, n)]:

Table 2

p ≡ 1 (mod 2) p ≡ 2 (mod 4) p ≡ 0 (mod 4)
[M(Zp, n),M(Zp, n)] Zp Z2p Zp ⊕ Z2

Generators 1X 1X 1X , i ◦ ηn ◦ q

3. Self-homotopy equivalences that induce the identity on
co-homotopy groups

In this section, we study the properties of the sets E♯
k(X). We recall

E♯
k(X) = E(X) ∩ [X,X ]♯k,

where

[X,X ]♯k = {f ∈ [X,X ] | g ◦ f ∼ g for each g : X → Sn, for all n ≥ k}.
Equivalently,

E♯
k(X) = {f ∈ E(X) | f ♯n = idπn(X) on πn(X) for n ≥ k}.

This definition indicates that E♯
m(X) ⊆ E♯

n(X) for n ≥ m. Hence, we obtain
a chain of subsets as follows:

(3.1) E(X) ⊇ · · · ⊇ E♯
n(X) ⊇ E♯

n−1(X) ⊇ · · · ⊇ E♯
1(X).

Proposition 3.1. E♯
k(X) is a subgroup of E(X).

Proof. Let f, g ∈ E♯
k(X) and ḡ be the homotopy inverse map of g. Because

g ◦ ḡ = idX and ḡ ◦ g = idX ,

idπk(X) = (g ◦ ḡ)♯k = ḡ♯k ◦ g♯k = ḡ♯k.

Thus,

(f ◦ ḡ)♯k = ḡ♯k ◦ f ♯k = ḡ♯k = idπk(X).

Hence, f ◦ ḡ ∈ E♯
k(X). Consequently, E♯

k(X) is a subgroup of E(X). �
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Lemma 3.2. If X is a finite CW complex, then there exists a positive integer

N such that [X,SN ] = 0.

Proof. Let dim(X) = m < ∞. We choose N such that N > m. If f ∈ [X,SN ],
then f(X) ⊆ (SN )m by the cellular approximation theorem, where (SN )m is
m-skeleton of SN . Because SN = e0 ∪ eN , (SN )m = e0. Thus f = 0 and
consequently, [X,SN ] = 0. �

Theorem 3.3. If X is a finite CW complex, then there are at most a finite

number of distinguishing subgroups E♯
k(X).

Proof. Let m < ∞ be the dimension of X . By definition of E♯
k(X), we see that

E(X) ⊇ · · · ⊇ E♯
n(X) ⊇ E♯

n−1(X) ⊇ · · · ⊇ E♯
1(X).

By Lemma 3.2, [X,Sm+i] = 0 for i = 1, 2, . . .. Hence E(X) = E♯
m+1(X).

Consequently, we have the following finite chain of subsets:

E(X) = E♯
m+1(X) ⊇ E♯

m(X) ⊇ · · · ⊇ E♯
n(X) ⊇ · · · ⊇ E♯

1(X).
�

Next, we consider abelian groups G1 and G2 and Moore spaces M1 =
M(G1, n1) and M2 = M(G2, n2). Let X = M1 ∨ M2. We denote by ij :
Mj → X the inclusion and by qj : X → Mj the projection, where j = 1, 2. If
f : X → X , then we define fjk : Mk → Mj by fjk = qj ◦ f ◦ ik for j, k = 1, 2.

By Proposition 2.1, let X = M1 ∨M2 then

[X,X ] = [M1,M1]⊕ [M1,M2]⊕ [M2,M1]⊕ [M2,M2].

By [3, Proposition 2.6], the function θ which assigns to each f ∈ [X,X ], the
2× 2 matrix

θ(f) =

(

f11 f12
f21 f22

)

,

where fjk ∈ [Mk,Mj ], is a bijection. In addition,
(1) θ(f + g) = θ(f)+ θ(g), so θ is an isomorphism [X,X ] → ⊕

j,k=1,2[Mk,Mj].

(2) θ(fg) = θ(f)θ(g), where fg denotes composition in [X,X ] and θ(f)θ(g)
denotes matrix multiplication.

Further, [3] also introduced the forms of the homomorphism induced by f

on homotopy, homology, and cohomology groups, respectively.
Now, we determine the form of the homomorphism induced by f on coho-

motogy groups.

Proposition 3.4. For any f ∈ [X,X ], we have

f ♯k(γ1, γ2) = (f ♯k
11 (γ1) + f

♯k
21 (γ2), f

♯k
12 (γ1) + f

♯k
22 (γ2)),

where γ1 ∈ πk(M1) and γ2 ∈ πk(M2).
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Proof. For any f ∈ [X,X ], we identify that

f =

(

f11 f12
f21 f22

)

.

Thus, f induces the homomorphism f ♯k on cohomotopy groups as follows:

f ♯k =

(

f
♯k
11 f

♯k
12

f
♯k
21 f

♯k
22

)

.

Because πk(X) = πk(M1) ⊕ πk(M2), we are able to identify γ ∈ πk(X) as
γ = (γ1, γ2), for some γi ∈ πk(Mi). Then

f ♯k(γ) = γf = (γ1, γ2)

(

f11 f12
f21 f22

)

= (γ1f11 + γ2f21, γ1f12 + γ2f22)

= (f ♯k
11 (γ1) + f

♯k
21 (γ2), f

♯k
12 (γ1) + f

♯k
22 (γ2)). �

Proposition 3.5. If f ∈ E♯
k(X), then

f ♯k =

(

1πk(M1) 0
0 1πk(M2)

)

.(3.2)

Proof. Because f induces the identity on πk(X), f ♯k = idπk(X) = 1♯kX , where

1X ∈ [X,X ] is the identity map. As 1X =
(

1M1 0
0 1M2

)

, we have

f ♯k = 1♯kX =

(

1πk(M1) 0
0 1πk(M2)

)

.
�

Here, we review the group of self homotopy equivalences of Moore space.
Let p be a positive integer. In [11], Sieradski proved the following result by
using the universal coefficient theorem for homotopy:

E(M(Zp, n)) ∼=
{

Zp ⋊ Z∗
p n = 2

Z(2,p) ⋊ Z∗
p n ≥ 3,

where Z∗
p is the automorphism group of Zp.

Our computations require us to determine the definite forms of elements in
E(M(Zp, n)) and we use the concept of the self-closeness number introduced
in [5] for this purpose. Because the Moore space of type (G,n) has the self
closeness number n by [5, Corollary 3], An

♯ (M(Zp, n)) = E(M(Zp, n)) by [5,

Definition 2.1 or Theorem 4], where An
♯ (M(Zp, n)) is the set of homotopy

classes of self-maps of M(Zp, n) that induce an automorphism of πi(X) for
i = 0, 1, . . . , n. To determine the definite forms of elements in E(M(Zp, n)), we
compute An

♯ (M(Zp, n)) rather than E(M(Zp, n)).
Consider the mapping cone sequence

Sn p−→ Sn i−−→ Sn ∪p e
n+1 π−−→ Sn+1 p−−→ Sn+1,
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where p is a map of degree p, i is the inclusion and π is the quotient map.

Theorem 3.6. Let X = M(Zp, n) be a Moore space. Then we have

An
♯ (X) =











{k · 1X | (k, p) = 1} p ≡ 1 (mod 2),

{ ℓ · i ◦ ηn ◦ π + k · 1X | (k, p) = 1} p ≡ 0 (mod 4),

{k · 1X , (k + p) · 1X | (k, p) = 1} p ≡ 2 (mod 4).

Proof. We first note that πn(X) ∼= Zp{i♯(ιn)}.
Suppose that p is odd. Then [X,X ] = Zp{1X}. Moreover, we have

1X♯(i♯(ιn)) = 1X ◦ i ◦ ιn = i♯(ιn).

Thus, (k · 1X)♯(i♯(ιn)) = k · (i♯(ιn)). It follows that
An

♯ (X) = {k · 1X | (k, p) = 1} = Z∗
p.

Suppose that p ≡ 0 (mod 4). In this case,

[X,X ] = Z2 ⊕ Zp{i ◦ ηn ◦ π, 1X}.
Because 1X♯(i♯(ιn)) = i♯(ιn) and (i ◦ ηn ◦ π)♯(i♯(ιn)) = i ◦ ηn ◦ π ◦ i ◦ ιn = 0, we
have

(ℓ · (i ◦ ηn ◦ π) + k · 1X)♯(i♯(ιn)) = (k · 1X)♯(i♯(ιn)) = k · (i♯(ιn))
for ℓ ∈ Z2 and k ∈ Zp. Therefore

An
♯ (X) = {ℓ · (i ◦ ηn ◦ π) + k · 1X | (k, p) = 1}.

Suppose that p ≡ 2 (mod 4). In this case, we have [X,X ] = Z2p{1X}. As
k · 1X♯(i♯(ιn)) = k · i♯(ιn) for 0 < k ≤ p and (p+ k) · 1X♯(i♯(ιn)) = k · i♯(ιn) for
0 < k ≤ p, we have

An
♯ (X) = {k · 1X | (k, p) = 1, 1 < k ≤ p} ∪ {(p+ k) · 1X | (k, p) = 1, 0 < k < p}.

�

4. Computation of E♯
k(M(Zp, n))

In this section, we compute E♯
k(M(Zp, n)) and determine their generators for

k = n+ 1, n, and n− 1. Throughout this section, we let X = M(Zp, n).

Theorem 4.1. For E♯
n+1(X), we have the following table:

p odd p ≡ 0 (mod 4) p ≡ 2 (mod 4)

E♯
n+1(X) 1 Z2 Z2

generators 1X ℓi ◦ ηn ◦ q ⊕ 1X (ℓ+ 1)1X

Proof. Because πk(X) = 0 for k > n + 1 by Theorem 3.3, it is sufficient to
consider the (n + 1)-th cohomotopy group of X . From Table 1, πn+1(X) =
Zp{ιn+1 ◦ q}.

Case 1. Let p be odd.
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By Theorem 3.6, for each f ∈ E(X), f = k1X for some k such that 0 ≤ k ≤
p− 1 and (k, p) = 1. Thus, we have

f ♯n+1(ιn+1 ◦ π) = ιn+1 ◦ π ◦ (k1X) = k(ιn+1 ◦ π ◦ 1X) = k(ιn+1 ◦ π).
Therefore, to ensure that f ♯n+1 = 1πn+1 holds, k is require to be 1. Hence

E♯
n+1(X) ∼= 1{1X}.
Case 2. Let p ≡ 0 (mod 2).
By Theorem 3.6, for each f ∈ E(X), f = ℓi◦ηn ◦π⊕k1X , for some ℓ = 0, 1,

where k is an integer such that 0 ≤ k ≤ p− 1 and (k, p) = 1. Thus, we have

f ♯n+1(ιn+1 ◦ π) = ιn+1 ◦ π(ℓi ◦ ηn ◦ π ⊕ k1X)

= ℓιn+1 ◦ π ◦ i ◦ ηn ◦ π ⊕ kιn+1 ◦ π ◦ 1X
= kιn+1 ◦ π

because q ◦ i is homotopic to the constant map. Thus k is require to be 1 and
ℓ = 0 or 1 to ensure that f ♯n+1 = 1πn+1 holds. Hence

E♯
n+1(X) ∼= Z2{ ℓi ◦ ηn ◦ q ⊕ 1X | ℓ = 0, 1}.

Case 3. Let p ≡ 2 (mod 4).
By Theorem 3.6, for each f ∈ E(X), f = (k + ℓ)1X for some k and ℓ such

that 0 ≤ k ≤ p− 1, (k, p) = 1 and ℓ = 0, p. Thus, we have

f ♯n+1(ιn+1 ◦ π) = (k + ℓ)(ιn+1 ◦ π ◦ 1X) = (k + ℓ)ιn+1 ◦ π.
Thus k is require to be 1 and ℓ = 0 or p to ensure that f ♯n+1 = 1πn+1 holds.
Hence,

E♯
n+1(X) ∼= Z2{(ℓ+ 1)1X | ℓ = 0, p}. �

Theorem 4.2. For E♯
n(X), we have the following table:

p odd p ≡ 0 (mod 4) p ≡ 2 (mod 4)

E♯
n(X) 1 Z2 Z2

generators 1X 1X ⊕ ℓi ◦ ηn ◦ π (ℓ+ 1)1X

Proof. We first note that E♯
n(X) ⊆ E♯

n+1(X). From Table 1,

πn(X) =

{

0 p ≡ 1 (mod 2),

Z2{ηn ◦ π} p ≡ 0 (mod 2).

Case 1. Let p be odd.

By Theorem 4.1, E♯
n(X) ⊆ E♯

n+1(X) ∼= 1.
Case 2. Let p ≡ 0 (mod 4).
By Theorem 4.1, for each f ∈ E(X), we have f = ℓi◦ηn ◦π⊕1X for ℓ = 0, 1.

Thus, we have

f ♯n(ηn ◦ π) = ηn ◦ π ◦ (ℓi ◦ ηn ◦ π ⊕ 1X)

= ℓηn ◦ π ◦ i ◦ ηn ◦ π ⊕ ηn ◦ π ◦ 1X
= ηn ◦ π
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because π◦i is homotopic to the constant map. Thus for any ℓ = 0, 1, f ♯n = 1πn

holds. Hence,
E♯
n(X) ∼= Z2{ ℓi ◦ ηn ◦ q ⊕ 1X | ℓ = 0, 1}.

Case 3. Let p ≡ 2 (mod 4).
By Theorem 4.1, for each f ∈ E(X), f = (ℓ + 1)1X , for ℓ = 0, p. Thus, we

have
f ♯n(ηn ◦ π) = (ℓ + 1)(ηn ◦ π ◦ 1X) = (ℓ+ 1)ηn ◦ π.

Therefore, for any ℓ = 0, p, f ♯n = 1πn
holds. Hence,

E♯
n(X) ∼= Z2{ (1 + ℓ)1X | ℓ = 0, p}. �

Theorem 4.3. If n > 3, then E♯
n−1(M(Zp, n)) = 1{1M(Zp,n)}.

Proof. First we note that E♯
n−1(X) ⊆ E♯

n(X) and

πn−1(X) =











0 p : odd

Z2 ⊕ Z2{η̄n−1, η
2
n−1 ◦ q} p ≡ 0 (mod 4)

Z4{η2n−1 ◦ q} p ≡ 2 (mod 4)

by Table 1.

In case that p is odd, it is clear because E♯
n−1(X) ⊆ E♯

n(X) ∼= 1 by Theorem
4.2.

Suppose p ≡ 0 (mod 4). By Theorem 4.2, for each f ∈ E(X), f = ℓi ◦ ηn ◦
q ⊕ 1X for ℓ = 0, 1. Thus, we have

f ♯n−1(η̄n−1 ⊕ η2n−1 ◦ q) = (η̄n−1 ⊕ η2n−1 ◦ q) ◦ (ℓi ◦ ηn ◦ q ⊕ 1X)

= η̄n−1 ◦ (ℓi ◦ ηn ◦ q ⊕ 1X)

⊕ η2n−1 ◦ q ◦ (ℓi ◦ ηn ◦ q ⊕ 1X)

= (ℓη̄n−1 ◦ i ◦ ηn ◦ q ⊕ η̄n−1 ◦ 1X)

+ (ℓη2n−1 ◦ q ◦ i ◦ ηn ◦ q ⊕ η2n−1 ◦ q ◦ 1X)

= (ℓηn−1 ◦ ηn ◦ q ⊕ η̄n−1) + (η2n−1 ◦ q ⊕ 0)

= (ℓ + 1)η2n−1 ◦ q ⊕ η̄n−1

because q ◦ i is homotopic to the constant map.

For f ♯n−1 = 1πn−1 to be valid, 1 + ℓ = 1; thus ℓ = 0. Hence, E♯
n−1(X) ∼=

1{1X}.
Suppose p ≡ 2 (mod 4). By Theorem 4.2, for each f ∈ E(X), f = (ℓ+1)1X

for ℓ = 0, p. Thus, we have

f ♯n−1(η2n−1) = (ℓ + 1)η2n−1 ◦ q ◦ 1X = (ℓ + 1)η2n−1 ◦ q.
If ℓ = p, then (ℓ + 1)η2n−1 ◦ q = 3η2n−1 ◦ q 6= η2n−1 ◦ q because πn−1(X) =

Z4. Thus, to ensure that f ♯n−1 = 1πn−1 holds, ℓ is require to be 0. Hence

E♯
n−1(X) ∼= 1{1X}. �

Theorem 4.4. For X = M(Zp, 3), we have the following table:
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p odd p ≡ 0 (mod 4) p ≡ 2 (mod 4)

E♯
n−1(X) 1 Z2 Z2

generators 1X 1X ⊕ i ◦ η3 ◦ q (p+ 1)1X

Proof. Based on the Puppe Sequence, we have

π2(X) =

{

0 p ≡ 1 (mod 2),

Z2{η22 ◦ q} p ≡ 0 (mod 2).

Case 1. Let p be odd.

By Theorem 4.2, E♯
n−1(X) ⊆ E♯

n(X) ∼= 1.
Case 2. Let p ≡ 0 (mod 4).
By Theorem 3.6, for each f ∈ E(X), f = k1X ⊕ ℓi ◦ ηn ◦ π for some k and ℓ

such that 0 ≤ k ≤ p− 1, (k, p) = 1 and ℓ = 0, 1. Thus we have

f ♯n−1(η22 ◦ π) = (η22 ◦ π) ◦ (k1X ⊕ ℓi ◦ η3 ◦ π)
= kη22 ◦ π ◦ 1X ⊕ ℓη22 ◦ π ◦ i ◦ η3 ◦ π
= kη22 ◦ π

because π ◦ i is homotopic to the constant map. Thus, for f ♯n−1 = 1πn−1 to
hold, k is required to be 1. Hence,

E♯
n−1(X) ∼= Z2{1X ⊕ ℓi ◦ η3 ◦ q| ℓ = 0, 1}.

Case 3. Let p ≡ 2 (mod 4).
By Theorem 3.6, for each f ∈ E(X), f = (k + ℓ)1X for some k and l such

that 0 ≤ k ≤ p− 1, (k, p) = 1 and ℓ = 0, p. Thus, we have

f ♯n−1(η22 ◦ q) = (k + ℓ)η22 ◦ q ◦ 1X = (k + ℓ)η22 ◦ q.
Therefore, to ensure that f ♯n−1 = 1πn−1 holds, k is required to be 1. Hence,

E♯
n−1(X) ∼= Z2{ (ℓ+ 1)1X | ℓ = 0, p}. �

5. Computation of E♯
k(C(Zp, n))

In this section, we compute E♯
k(C(Zp, n)) and determine their generators for

k = n, n − 1 and n − 2. Throughout this section, we let X = C(Zp, n) and
M2 = M(Zp, n− 1).

First of all, we determine the generators of [X,X ] and [X,Sn].
It is well known that

C(Zp, n) = M(Z, n) ∨M(Zp, n− 1) = Sn ∨M(Zp, n− 1)

for n > 3. Thus we have

[X,X ] ∼= [Sn, X ]⊕ [M2, X ]

and by Proposition 2.1,

[X,X ] ∼= [X,Sn]⊕ [X,M2].
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Consequently,

[X,X ] ∼= [Sn, Sn]⊕ [M2, S
n]⊕ [Sn,M2]⊕ [M2,M2].

In [3], we have

E(X) = E(Sn)⊕ [M2, S
n]⊕ [Sn,M2]⊕ E(M2).

Consider the mapping cone sequence

Sn p−→ Sn i−−→ M(Zp, n)
π−−→ Sn+1 p−−→ Sn+1

and let i1 : Sn → X and i2 : M2 → X be inclusion maps and q1 : X → Sn and
q2 : X → M2 be projection maps.

Then, from Table 1 and Theorem 3.6, we have the following lemmas.

Lemma 5.1. If i1 : Sn → X and i2 : M2 → X are inclusion maps and

q1 : X → Sn and q2 : X → M2 are projection maps, then we have:

p ≡ 1 (mod 2)
[X,X] Z⊕ Zp ⊕ Zp

Generators i1◦ιn◦q1, i1◦ιn◦π◦q2, i1◦1M2 ◦q2

p ≡ 0 (mod 4)
[X,X] Z⊕ Zp ⊕ Z2 ⊕ Z2 ⊕ Zp

Generators
i1◦ιn◦q1, i1◦ιn◦π◦q2 ,

i2◦i◦ηn−1 ◦q1, i2◦i◦ηn−1 ◦π◦q2, i2◦1M2 ◦q2

p ≡ 2 (mod 4)
[X,X] Z⊕ Zp ⊕ Z2 ⊕ Z2p

Generators i1◦ιn◦q1, i1◦ιn◦π◦q2, i2◦i◦ηn−1 ◦q1, i2◦1M2 ◦q2

As E(Sn) ∼= Z2, we have the following lemma.

Lemma 5.2. E(X) is isomorphic to

p ≡ 1 (mod 2) Z2 ⊕ Zp ⊕ (Z∗
p)

p ≡ 0 (mod 4) Z2 ⊕ Zp ⊕ Z2 ⊕ (Z2 ⋊ Z∗
p)

p ≡ 2 (mod 4) Z2 ⊕ Zp ⊕ Z2 ⊕ (Z2 ⋊ Z∗
p)

By Proposition 2.1,

πr(X) = πr(Sn)⊕ πr(M(Zp, n− 1)).

Thus, we have the following lemma from Table 1,

Lemma 5.3. For πr(X), we have the following table:

πr(X) Generators
r = n Z⊕ Zp ιn◦q1, ιn◦π◦q2

r = n− 1
p ≡ 1 (mod 2) Z2 ηn−1◦q1
p ≡ 0 (mod 2) Z2 ⊕ Z2 ηn−1◦q1, ηn−1◦π◦q2

r = n− 2
p ≡ 1 (mod 2) Z2 η2n−2◦q1
p ≡ 0 (mod 4) Z2 ⊕ Z2 ⊕ Z2 η2n−2◦q1, η2n−2◦π◦q2, η̄n◦q2
p ≡ 2 (mod 4) Z2 ⊕ Z4 η2n−2◦q1, η̄n◦q2

Now, we compute E♯
k(X) and determine their generators for k = n, n − 1,

and n− 2.

Theorem 5.4. For E♯
n(X), we have the following table:
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p ≡ 1 (mod 2) p ≡ 0 (mod 4) p ≡ 2 (mod 4)
E♯
n(X) 1 Z2 ⊕ Z2 Z2 ⊕ Z2

Proof. Because πk(X) = 0 for k > n, it is sufficient to consider the case that
k = n. From Lemma 5.3, πn(X) = Z⊕ Zp{ιn ◦ q1, ιn ◦ π ◦ q2}. By Proposition
3.4, each f ∈ E(X) can be identified as

f =

(

f11 f12
f21 f22

)

.

Let γ = (γ1, γ2) = (ιn ◦ q1, ιn ◦ π ◦ q2) be the generator.
Case 1. Let p be odd.
By Lemma 5.2, for each f ∈ E(X), we have

f11 = si1 ◦ ιn ◦ q1,
f12 = ti1 ◦ ιn ◦ π ◦ q2,
f21 = 0,

f22 = ki1 ◦ 1M2 ◦ q2
for some k, s and t such that 0 ≤ t ≤ p − 1, 0 ≤ k ≤ p − 1 and (k, p) = 1,
s = −1, 1. Thus we have

f
♯n
11 (γ1) = ιn ◦ q1 ◦ s(i1 ◦ ιn ◦ q1)

= sιn ◦ q1 ◦ i1 ◦ ιn ◦ q1 = sιn ◦ q1,
f
♯n
12 (γ1) = ιn ◦ q1 ◦ t(i1 ◦ ιn ◦ π ◦ q2)

= tιn ◦ q1 ◦ i1 ◦ ιn ◦ π ◦ q2 = tιn ◦ π ◦ q2,
f
♯n
22 (γ2) = ιn ◦ π ◦ q2 ◦ (ki2 ◦ 1M2 ◦ q2) = kιn ◦ π ◦ q2.

By Proposition 3.5, s = 1, t = 0 and k = 1. Hence

E♯
n(X) ∼= 1

{(

i1 ◦ ιn ◦ q1 0
0 i2 ◦ 1M2 ◦ q2

)}

.

Case 2. p ≡ 0 (mod 4).
By Lemma 5.2, for each f ∈ E(X), we have

f11 = si1 ◦ ιn ◦ q1,
f12 = ti1 ◦ ιn ◦ π ◦ q2,
f21 = mi2 ◦ i ◦ ηn−1 ◦ q1,
f22 = ℓi2 ◦ i ◦ ηn−1 ◦ π ◦ q2 ⊕ ki2 ◦ 1M2 ◦ q2

for k, ℓ, m, s and t such that 0 ≤ t ≤ p− 1, 0 ≤ k ≤ p− 1, m, ℓ = 0, 1, s = −1, 1
and (k, p) = 1. Thus we have

f
♯n
11 (γ1) = ιn ◦ q1 ◦ s(i1 ◦ ιn ◦ q1)

= sιn ◦ q1 ◦ i1 ◦ ιn ◦ q1 = sιn ◦ q1,
f
♯n
12 (γ1) = ιn ◦ q1 ◦ t(i1 ◦ ιn ◦ π ◦ q2)
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= tιn ◦ q1 ◦ i1 ◦ ιn ◦ q ◦ q2 = tιn ◦ π ◦ q2,
f
♯n
21 (γ2) = ιn ◦ π ◦ q2 ◦m(i2 ◦ i ◦ ηn−1 ◦ q1)

= mιn ◦ q ◦ q2 ◦ i2 ◦ i ◦ ηn−1 ◦ q1 = 0,

f
♯n
22 (γ2) = ιn ◦ π ◦ q2 ◦ (ℓi2 ◦ i ◦ ηn−1 ◦ π ◦ q2 ⊕ ki2 ◦ 1M2 ◦ q2)

= ℓιn ◦ π ◦ q2 ◦ i2 ◦ i ◦ ηn−1 ◦ π ◦ q2 ⊕ kιn ◦ π ◦ q2 ◦ i2 ◦ 1M2 ◦ q2
= kιn ◦ π ◦ q2

because π ◦ i is homotopic to the constant map.
By Proposition 3.5, s = 1, t = 0, k = 1 and m, ℓ = 0, 1. Hence

E♯
n(X) ∼= Z2 ⊕ Z2

{(

i1 ◦ ιn ◦ q1 0
mi2 ◦ i ◦ ηn−1 ◦ q1 ℓα⊕ i2 ◦ 1M2 ◦ q2

)∣

∣

∣

∣

m, ℓ = 0, 1

}

,

where α = i2 ◦ i ◦ ηn−1 ◦ π ◦ q2.
Case 3. Let p ≡ 2 (mod 4).
By Lemma 5.2, for each f ∈ E(X), we have

f11 = si1 ◦ ιn ◦ q1,
f12 = ti1 ◦ ιn ◦ π ◦ q2,
f21 = mi2 ◦ iηn−1 ◦ q1,
f22 = (k + ℓ)i2 ◦ 1M2 ◦ q2

for k, ℓ, m, s and t such that 0 ≤ t ≤ p− 1, 0 ≤ k ≤ p− 1, m = 0, 1, s = −1, 1,
ℓ = 0, p and (k, p) = 1. Thus we have

f
♯n
11 (γ1) = ιn ◦ q1 ◦ s(i1 ◦ ιn ◦ q1)

= sιn ◦ q1 ◦ i1 ◦ ιn ◦ q1 = sιn ◦ q1,
f
♯n
12 (γ1) = ιn ◦ q1 ◦ t(i1 ◦ ιn ◦ π ◦ q2)

= tιn ◦ q1 ◦ i1 ◦ ιn ◦ π ◦ q2 = tιn ◦ π ◦ q2,
f
♯n
21 (γ2) = ιn ◦ q ◦ q2 ◦m(i2 ◦ iηn−1 ◦ q1)

= mιn ◦ q ◦ q2 ◦ i2 ◦ iηn−1 ◦ q1 = 0,

f
♯n
22 (γ2) = ιn ◦ π ◦ q2 ◦ (k + ℓ)(i2 ◦ 1M2 ◦ q2)

= (k + ℓ)ιn ◦ π ◦ q2 ◦ i2 ◦ 1M2 ◦ q2 = (k + ℓ)ιn ◦ π ◦ q2
because π ◦ i is homotopic to the constant map.

By Proposition 3.5, s = 1, t = 0, k = 1, ℓ = 0, p and m = 0, 1. Hence

E♯
n(X) ∼= Z2 ⊕ Z2

{(

i1 ◦ ιn ◦ q1 0
mi2 ◦ i ◦ ηn−1 ◦ q1 (ℓ+ 1)i2 ◦ 1M2 ◦ q2

)∣

∣

∣

∣

m = 0, 1 and ℓ = 0, p
}

.
�

Theorem 5.5. For E♯
n−1(X), we have the following table:
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p ≡ 1 (mod 2) p ≡ 0 (mod 4) p ≡ 2 (mod 4)

E♯
n−1(X) 1 Z2 ⊕ Z2 Z2 ⊕ Z2

Proof. From Lemma 5.3, we have

πn−1(X) =

{

Z2{ηn−1 ◦ q1} p ≡ 1 (mod 2),

Z2 ⊕ Z2{ηn−1 ◦ q1, ηn−1 ◦ π ◦ q2} p ≡ 0 (mod 2).

Case 1. Let p be odd.

By Theorem 5.4, we have E♯
n−1(X) ⊆ E♯

n(X) ∼= 1.
Case 2. Let p ≡ 0 (mod 4).
By Theorem 5.4, for each f ∈ E(X), we have

f11 = i1 ◦ ιn ◦ q1,
f12 = 0,

f21 = mi2 ◦ i ◦ ηn−1 ◦ q1,
f22 = ℓi2 ◦ i ◦ ηn−1 ◦ π ◦ q2 ⊕ i2 ◦ 1M2 ◦ q2

for m, ℓ = 0, 1. By Proposition 3.5, it is sufficient to determine f21 and f22;
however, we have

f
♯n−1
21 (γ2) = ηn−1 ◦ π ◦ q2 ◦m(i2 ◦ i ◦ ηn−1 ◦ q1)

= mηn−1 ◦ π ◦ q2 ◦ i2 ◦ i ◦ ηn−1 ◦ q1 = 0,

f
♯n−1
22 (γ2) = ηn−1 ◦ π ◦ q2 ◦ (ℓi2 ◦ i ◦ ηn−1 ◦ π ◦ q2 ⊕ i2 ◦ 1M2 ◦ q2)

= ℓηn−1 ◦ π ◦ q2 ◦ i2 ◦ i ◦ ηn−1 ◦ π ◦ q2 ⊕ ηn−1 ◦ π ◦ q2 ◦ i2 ◦ 1M2 ◦ q2
= ηn−1 ◦ π ◦ q2

because π ◦ i is homotopic to the constant map.
By Proposition 3.5, m, ℓ = 0, 1. Hence,

E♯
n−1(X) ∼= Z2 ⊕ Z2

{(

i1 ◦ ιn ◦ q1 0
mi2 ◦ i ◦ ηn−1 ◦ q1 ℓα⊕ i2 ◦ 1M2 ◦ q2

)∣

∣

∣

∣

ℓ = 0, 1 and m = 0, 1
}

,

where α = i2 ◦ i ◦ ηn−1 ◦ q ◦ q2.
Case 3. Let p ≡ 2 (mod 4)

By Theorem 5.4, for each f ∈ E(X), we have

f11 = i1 ◦ ιn ◦ q1,
f12 = 0,

f21 = mi2 ◦ iηn−1 ◦ q1,
f22 = (1 + ℓ)i2 ◦ 1M2 ◦ q2

for m = 0, 1, ℓ = 0, p. By Proposition 3.5, it is sufficient to determine f21 and
f22; however, we have

f
♯n−1
21 (γ2) = ηn−1 ◦ π ◦ q2 ◦m(i2 ◦ iηn−1 ◦ q1)
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= mηn−1 ◦ π ◦ q2 ◦ i2 ◦ iηn−1 ◦ q1 = 0,

f
♯n−1
22 (γ2) = ηn−1 ◦ π ◦ q2 ◦ (1 + ℓ)(i2 ◦ 1M2 ◦ q2)

= (1 + ℓ)ηn−1 ◦ π ◦ q2 ◦ i2 ◦ 1M2 ◦ q2 = (1 + ℓ)ηn−1 ◦ π ◦ q2
because q ◦ i is homotopic to the constant map.

By Proposition 3.5, ℓ = 0, p and m = 0, 1. Hence

E♯
n−1(X) ∼= Z2 ⊕ Z2

{(

i1 ◦ ιn ◦ q1 0
i2 ◦ i ◦ ηn−1 ◦ q1 (ℓ+ 1)i2 ◦ 1M2 ◦ q2

)∣

∣

∣

∣

ℓ = 0, p and m = 0, 1
}

.
�

Theorem 5.6. E♯
n−2(C(Zp, n)) ∼= 1.

Proof. From Theorem 5.3,

πn−2(X) =











Z2{η2n−2 ◦ q1} p ≡ 1 (mod 2),

Z2 ⊕ Z2 ⊕ Z2{η2n−2 ◦ q1, η2n−2 ◦ π ◦ q2, η̄n ◦ q2} p ≡ 0 (mod 4),

Z2 ⊕ Z4{η2n−2 ◦ q1, η̄n ◦ q2} p ≡ 2 (mod 4).

Case 1. Let p be odd. By Theorem 5.5, E♯
n−2(X) ⊆ E♯

n−1(X) ∼= 1.
Case 2. Let p ≡ 0 (mod 4).
Then, the generator of πn−2(X) is

γ = (γ1, γ2) = (η2n−2 ◦ q1, η2n−2 ◦ π ◦ q2 ⊕ η̄n ◦ q2).
By Theorem 5.5, for each f ∈ E(X), we have

f11 = i1 ◦ ιn ◦ q1,
f12 = 0,

f21 = mi2 ◦ i ◦ ηn−1 ◦ q1,
f22 = ℓα⊕ i2 ◦ 1M2 ◦ q2

for m, ℓ = 0, 1 and α = i2 ◦ i ◦ ηn−1 ◦ q ◦ q2. By Proposition 3.5, it is sufficient
to determine f21 and f22; however, we have

f
♯n−2
21 (γ2) = η2n−2 ◦ π ◦ q2 ⊕ η̄n ◦ q2 ◦m(i2 ◦ i ◦ ηn−1 ◦ q1)

= mη2n−2 ◦ π ◦ q2 ◦ i2 ◦ i ◦ ηn−1 ◦ q1 ⊕mη̄n ◦ q2 ◦ i2 ◦ i ◦ ηn−1 ◦ q1
= mη̄n ◦ i ◦ ηn ◦ q1 = mηn−2ηn−1 ◦ q1
= mη2n−2 ◦ q1,

f
♯n−2
22 (γ2) = η2n−2 ◦ π ◦ q2 ⊕ η̄n ◦ q2 ◦ (ℓα⊕ i2 ◦ 1M2 ◦ q2)

= η2n−2 ◦ π ◦ q2 ◦ (ℓα⊕ i2 ◦ 1M2 ◦ q2) + η̄n ◦ q2 ◦ (ℓα⊕ i2 ◦ 1M2 ◦ q2)
= ℓη2n−2 ◦ π ◦ q2 ◦ α⊕ η2n−2 ◦ π ◦ q2 ◦ i2 ◦ 1M2 ◦ q2

+ ℓη̄n ◦ q2 ◦ α⊕ η̄n ◦ q2 ◦ i2 ◦ 1M2 ◦ q2
= η2n−2 ◦ π ◦ q2 + ℓη̄n ◦ iηn−1 ◦ π ◦ q2 ⊕ η̄n ◦ q2
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= η2n−2 ◦ π ◦ q2 + ℓη2n−2 ◦ π ◦ q2 ⊕ η̄n ◦ q2
= (1 + ℓ)η2n−2 ◦ π ◦ q2 ⊕ η̄n ◦ q2

because q ◦ i is homotopic to the constant map and η̄n ◦ iηn−2 = η2n−2 =
ηn−2 ◦ ηn−1.

By Proposition 3.5, ℓ = 0 and m = 0. Hence,

E♯
n−2(X) ∼= 1

{(

i1 ◦ ιn ◦ q1 0
0 i2 ◦ 1M2 ◦ q2

)}

.

Case 3. Let p ≡ 2 (mod 4).
Then the generator of πn−2(X) is γ = (γ1, γ2) = (η2n−2 ◦ q1, η̄n ◦ q2). By

Theorem 5.5, for each f ∈ E(X), we have

f11 = i1 ◦ ιn ◦ q1,
f12 = 0,

f21 = mi2 ◦ iηn−1 ◦ q1,
f22 = (1 + ℓ)i2 ◦ 1M2 ◦ q2

for ℓ = 0, p and m = 0, 1. By Proposition 3.5, it is sufficient to determine f21
and f22; however, we have

f
♯n−2
21 (γ2) = η̄n ◦ q2 ◦m(i2 ◦ iηn−1 ◦ q1)

= mη̄n ◦ q2 ◦ i2 ◦ iηn−1 ◦ q1 = mη2n−2 ◦ q1,
f
♯n−2
22 (γ2) = η̄n ◦ q2 ◦ (1 + ℓ)(i2 ◦ 1M2 ◦ q2)

= (1 + ℓ)η̄n ◦ q2 ◦ i2 ◦ 1M2 ◦ q2 = (1 + ℓ)η̄n ◦ q2
because η̄n ◦ iηn−2 = ηn−2 ◦ ηn−1 = η2n−2.

If ℓ = p, then (1+ p)η̄n ◦ q2 = 3η̄n ◦ q2 6= η̄n ◦ q2 because η̄n ◦ q2 has order 4.
Thus, by Proposition 3.5, ℓ = 0 and m = 0. Hence,

E♯
n−2(X) ∼= 1

{(

i1 ◦ ιn ◦ q1 0
0 i2 ◦ 1M2 ◦ q2

)}

.
�
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