J. Korean Math. Soc. **54** (2017), No. 2, pp. 399–415 https://doi.org/10.4134/JKMS.j150765 pISSN: 0304-9914 / eISSN: 2234-3008

SELF-HOMOTOPY EQUIVALENCES RELATED TO COHOMOTOPY GROUPS

HO WON CHOI, KEE YOUNG LEE, AND HYUNG SEOK OH

ABSTRACT. Given a topological space X and a non-negative integer k, we study the self-homotopy equivalences of X that do not change maps from X to n-sphere S^n homotopically by the composition for all $n \geq k$. We denote by $\mathcal{E}_k^{\sharp}(X)$ the set of all homotopy classes of such self-homotopy equivalences. This set is a dual concept of $\mathcal{E}_k^k(X)$, which has been studied by several authors. We prove that if X is a finite CW complex, there are at most a finite number of distinguishing homotopy classes $\mathcal{E}_k^{\sharp}(X)$, whereas $\mathcal{E}_k^k(X)$ may not be finite. Moreover, we obtain concrete computations of $\mathcal{E}_k^k(X)$ to show that the cardinal of $\mathcal{E}_k^{\sharp}(X)$ is finite when X is either a Moore space or co-Moore space by using the self-closeness numbers.

1. Introduction

Throughout this paper, all topological spaces are based and have the based homotopy type of a CW-complex, and all maps and homotopies preserve base points. For the spaces X and Y, we denote by [X, Y] the set of homotopy classes of maps from X to Y. No distinction is made between the notation of a map $X \to Y$ and that of its homotopy class in [X, Y]. Let S^n be the *n*-sphere. Then, $[S^n, Y]$ is known as the *n*-th homotopy group of space Y, denoted by $\pi_n(Y)$ and $[X, S^n]$ is referred to as the *n*-th cohomotopy group of X, denoted by $\pi^n(X)$.

Given X, we denote by $\mathcal{E}(X)$ the set of all homotopy classes of self-homotopy equivalences of X. Then, $\mathcal{E}(X)$ is a subset of [X, X] and has a group structure given by the composition of homotopy classes. $\mathcal{E}(X)$ has been studied extensively by various authors, including Arkowitz [2], Maruyama [3], Lee [7], Rutter [8], Sawashita [9], and Sieradski [10]. Moreover, several subgroups of $\mathcal{E}(X)$ have also been studied, notably the subgroup $\mathcal{E}^k_{\sharp}(X)$, which consists of the elements of $\mathcal{E}(X)$ that induce the identity homomorphism on homotopy

O2017Korean Mathematical Society

Received December 22, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 55P10, 55Q05, 55Q55.

 $Key\ words\ and\ phrases.$ self-homotopy equivalence, cohomotopy group, Moore space, co-Moore space.

This work was supported by a Korea University Grant.

groups $\pi_i(X)$ for i = 0, 1, 2, ..., k. In [3], Arkowitz and Maruyama introduced and determined these subgroups for Moore spaces and co-Moore spaces using the homological method. In [4], the second and third authors used homotopy techniques to calculate these subgroups for the wedge products of Moore spaces.

Given a topological space X and a non-negative integer k, consider the selfmap $f: X \to X$ such that $g \circ f$ is homotopic to g for each $g: X \to S^n$ and for each $n \geq k$. We denote by $[X, X]_k^{\sharp}$ the set of all homotopy classes of such self-maps of X, that is,

 $[X,X]_k^{\sharp} = \{ f \in [X,X] \mid g \circ f \sim g \text{ for each } g : X \to S^n, \text{ for all } n \ge k \}.$

This set has a monoid structure by composition.

We define

$$\mathcal{E}_k^{\sharp}(X) = \mathcal{E}(X) \cap [X, X]_k^{\sharp}.$$

Then, it is easy to prove that $\mathcal{E}_k^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$ and has a lower bound, whereas $\mathcal{E}_{\sharp}^k(X)$ has an upper bound.

In this paper, we compute these subgroups of Moore spaces and co-Moore spaces, by first showing that if X is a finite CW complex, then there are at most a finite number of distinguishing subgroups $\mathcal{E}_k^{\sharp}(X)$.

When G is an abelian group, we let M(G, n) denote the Moore space; i.e., the space in which G is a single non-vanishing homology group at the *n*-level. We note that if $n \geq 3$, then M(G, n) is characterized by

$$\widetilde{H}_i(M(G,n)) \cong \begin{cases} G & \text{if } i = n \\ 0 & \text{if } i \neq n. \end{cases}$$

Furthermore, we let C(G, n) denote the co-Moore space of type (G, n) defined by

$$\widetilde{H}^i(C(G,n)) \cong \left\{ \begin{array}{ll} G & \quad \text{if } i=n \\ 0 & \quad \text{if } i \neq n. \end{array} \right.$$

Next, we compute $\mathcal{E}_k^{\sharp}(X)$ for $X = M(\mathbb{Z}_p, n)$ or $X = C(\mathbb{Z}_p, n)$ to obtain the following tables:

	p odd	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_{n+1}^{\sharp}(M(\mathbb{Z}_p, n))$	1	\mathbb{Z}_2	\mathbb{Z}_2
$\mathcal{E}_n^{\sharp}(M(\mathbb{Z}_p, n))$	1	\mathbb{Z}_2	\mathbb{Z}_2
$\mathcal{E}_{n-1}^{\sharp}(M(\mathbb{Z}_p, n))$	1	1	1
	p odd	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_n^{\sharp}(C(\mathbb{Z}_p, n))$	p odd 1	$p \equiv 0 \pmod{4}$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$p \equiv 2 \pmod{4}$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2$
$\frac{\mathcal{E}_n^{\sharp}(C(\mathbb{Z}_p, n))}{\mathcal{E}_{n-1}^{\sharp}(C(\mathbb{Z}_p, n))}$	<i>p</i> odd 1 1	- (/	1 ()

Henceforth, when a group G is generated by a set $\{a_1, \ldots, a_n\}$, then we denote the group by $G\{a_1, \ldots, a_2\}$ or $G = \langle a_1, \ldots, a_n \rangle$. Moreover, when $f : X \to Y$ is a map, $f_{\sharp k} : \pi_k(X) \to \pi_k(Y)$ and $f^{\sharp k} : \pi^k(Y) \to \pi^k(X)$ denote the

induced homomorphisms in k-th homotopy group and k-th cohomotopy group, respectively.

2. Preliminaries

In this section, we review and summarize selected definitions and results provided in [1, 3, 5, 12], knowledge of which would be useful when reading this paper.

First, we summarize the concepts and results introduced in [5]. For any non-negative integer n, $\mathcal{A}^n_{\sharp}(X)$ consists of the homotopy classes of the self-map of X that induce an automorphism from $\pi_i(X)$ to $\pi_i(X)$ for i = 0, 1, ..., n. $\mathcal{A}^k_{\sharp}(X)$ is a submonoid of [X, X] and always contains $\mathcal{E}(X)$. If $n = \infty$, we briefly denote $\mathcal{A}^{\infty}_{\sharp}(X)$ as $\mathcal{A}_{\sharp}(X)$. If k < n, then $\mathcal{A}^n_{\sharp}(X) \subseteq \mathcal{A}^k_{\sharp}(X)$; thus, we have the following chain by inclusion:

$$\mathcal{E}(X) \subseteq \mathcal{A}_{\sharp}(X) \subseteq \cdots \subseteq \mathcal{A}_{\sharp}^{1}(X) \subseteq \mathcal{A}_{\sharp}^{0}(X) = [X, X].$$

Definition 2.1. Let X be a CW complex. The self closeness number of X is the minimum number n such that $\mathcal{A}^n_{\sharp}(X) = \mathcal{E}(X)$ and is denoted here by $N\mathcal{E}(X)$. That is,

$$N\mathcal{E}(X) = \min\{n \mid \mathcal{A}^n_{\mathsf{t}}(X) = \mathcal{E}(X) \text{ for } n \ge 0\}.$$

By [5, Theorem 1], the self-closeness number is a homotopy invariant. Moreover, if X is an n-connected space with dimension m and $\mathcal{E}(X) \neq [X, X]$, then we have $n < N\mathcal{E}(X) \le m$ by [5, Lemma 4 and Theorem 2].

Proposition 2.1 ([3]). If X is (k-1)-connected, Y is (l-1)-connected, and further, if $k, l \geq 2$, and dim $P \leq k + l - 1$, then the projections $X \vee Y \to X$ and $X \vee Y \to Y$ induce a bijection.

$$[P, X \lor Y] \to [P, X] \oplus [P, Y].$$

By [12], the generators of some homotopy groups of spheres can be summarized as follows.

	i < 0	i = 0	i = 1	i=2	i = 3	i = 4, 5
$[S^{n+i}, S^n]$	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0
Generator		ι_n	η_n	η_n^2	$ u_n$	0

Here, we note that for the Moore space $M(\mathbb{Z}_p, n) = S^n \cup_p e^{n+1}$, there exists a mapping cone sequence

$$S^n \xrightarrow{p} S^n \xrightarrow{i} S^n \cup_p e^{n+1} \xrightarrow{\pi} S^{n+1} \xrightarrow{p} S^{n+1}$$

where p is a map of degree p, i is an inclusion and π is a quotient map. In [1], Araki and Toda computed the homotopy groups, and cohomotopy groups of $M(\mathbb{Z}_p, n)$, and set of homotopy classes of self-maps on $M(\mathbb{Z}_p, n)$. The results can be summarized as follows.

1. Homotopy group $\pi_k(M(\mathbb{Z}_p, n))$ for k = n, n+1:

$$\pi_n(M(\mathbb{Z}_p, n)) \cong \mathbb{Z}_p\{i_{\sharp}(\iota_n)\}$$

and

402

$$\pi_{n+1}(M(\mathbb{Z}_p, n)) \cong \begin{cases} 0 & \text{if } p = \text{odd,} \\ \mathbb{Z}_2\{i_{\sharp}(\eta_n)\} & \text{if } p = \text{even.} \end{cases}$$

2. Cohomotopy groups
$$\pi^{n+i-3}(M(\mathbb{Z}_p, n))$$
:

TABLE	1
-------	---

	$i \leq 0$	i = 1	i = 2	i = 3	i = 4
$p \equiv 1 \pmod{2}$	0	\mathbb{Z}_p	0	0	$\mathbb{Z}_{(p,24)}$
$p \equiv 0 \pmod{4}$	0	\mathbb{Z}_p	\mathbb{Z}_2	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	$\mathbb{Z}_2\oplus\mathbb{Z}_{(p,24)}$
$p \equiv 2 \pmod{4}$	0	\mathbb{Z}_p	\mathbb{Z}_2	\mathbb{Z}_4	$\mathbb{Z}_2\oplus\mathbb{Z}_{(p,24)}$
Generators	-	$\iota_n \circ q$	$\eta_n \circ q$	$\bar{\eta}_n, \eta_n^2 \circ q$	$\eta_n\circ\bar\eta,\nu_n\circ q$

3. The set of homotopy classes $[M(\mathbb{Z}_p, n), M(\mathbb{Z}_p, n)]$:

TABLE 2

	$p \equiv 1 \pmod{2}$	$p \equiv 2 \pmod{4}$	$p \equiv 0 \pmod{4}$
$[M(\mathbb{Z}_p, n), M(\mathbb{Z}_p, n)]$	\mathbb{Z}_p	\mathbb{Z}_{2p}	$\mathbb{Z}_p\oplus\mathbb{Z}_2$
Generators	1_X	1_X	$1_X, i \circ \eta_n \circ q$

3. Self-homotopy equivalences that induce the identity on co-homotopy groups

In this section, we study the properties of the sets $\mathcal{E}_k^{\sharp}(X)$. We recall

$$\mathcal{E}_k^{\sharp}(X) = \mathcal{E}(X) \cap [X, X]_k^{\sharp},$$

where

 $[X,X]_k^{\sharp} = \{ f \in [X,X] \, | \, g \circ f \sim g \text{ for each } g : X \to S^n, \text{ for all } n \geq k \}.$ Equivalently,

$$\mathcal{E}_k^{\sharp}(X) = \{ f \in \mathcal{E}(X) \mid f^{\sharp n} = id_{\pi^n(X)} \text{ on } \pi^n(X) \text{ for } n \ge k \}.$$

This definition indicates that $\mathcal{E}_m^{\sharp}(X) \subseteq \mathcal{E}_n^{\sharp}(X)$ for $n \ge m$. Hence, we obtain a chain of subsets as follows:

(3.1)
$$\mathcal{E}(X) \supseteq \cdots \supseteq \mathcal{E}_n^{\sharp}(X) \supseteq \mathcal{E}_{n-1}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_1^{\sharp}(X)$$

Proposition 3.1. $\mathcal{E}_k^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$.

Proof. Let $f, g \in \mathcal{E}_k^{\sharp}(X)$ and \bar{g} be the homotopy inverse map of g. Because $g \circ \bar{g} = id_X$ and $\bar{g} \circ g = id_X$,

$$id_{\pi^k(X)} = (g \circ \bar{g})^{\sharp k} = \bar{g}^{\sharp k} \circ g^{\sharp k} = \bar{g}^{\sharp k}.$$

Thus,

$$(f\circ\bar{g})^{\sharp k}=\bar{g}^{\sharp k}\circ f^{\sharp k}=\bar{g}^{\sharp k}=id_{\pi^k(X)}$$

Hence, $f \circ \overline{g} \in \mathcal{E}_k^{\sharp}(X)$. Consequently, $\mathcal{E}_k^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$.

Lemma 3.2. If X is a finite CW complex, then there exists a positive integer N such that $[X, S^N] = 0$.

Proof. Let dim $(X) = m < \infty$. We choose N such that N > m. If $f \in [X, S^N]$, then $f(X) \subseteq (S^N)_m$ by the cellular approximation theorem, where $(S^N)_m$ is m-skeleton of S^N . Because $S^N = e^0 \cup e^N$, $(S^N)_m = e^0$. Thus f = 0 and consequently, $[X, S^N] = 0$.

Theorem 3.3. If X is a finite CW complex, then there are at most a finite number of distinguishing subgroups $\mathcal{E}_k^{\sharp}(X)$.

Proof. Let $m < \infty$ be the dimension of X. By definition of $\mathcal{E}_k^{\sharp}(X)$, we see that

$$\mathcal{E}(X) \supseteq \cdots \supseteq \mathcal{E}_n^{\sharp}(X) \supseteq \mathcal{E}_{n-1}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_1^{\sharp}(X).$$

By Lemma 3.2, $[X, S^{m+i}] = 0$ for $i = 1, 2, \ldots$ Hence $\mathcal{E}(X) = \mathcal{E}_{m+1}^{\sharp}(X)$. Consequently, we have the following finite chain of subsets:

$$\mathcal{E}(X) = \mathcal{E}_{m+1}^{\sharp}(X) \supseteq \mathcal{E}_{m}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_{n}^{\sharp}(X) \supseteq \cdots \supseteq \mathcal{E}_{1}^{\sharp}(X).$$

Next, we consider abelian groups G_1 and G_2 and Moore spaces $M_1 = M(G_1, n_1)$ and $M_2 = M(G_2, n_2)$. Let $X = M_1 \vee M_2$. We denote by $i_j : M_j \to X$ the inclusion and by $q_j : X \to M_j$ the projection, where j = 1, 2. If $f : X \to X$, then we define $f_{jk} : M_k \to M_j$ by $f_{jk} = q_j \circ f \circ i_k$ for j, k = 1, 2. By Proposition 2.1, let $X = M_1 \vee M_2$ then

$$[X, X] = [M_1, M_1] \oplus [M_1, M_2] \oplus [M_2, M_1] \oplus [M_2, M_2].$$

By [3, Proposition 2.6], the function θ which assigns to each $f \in [X,X],$ the 2×2 matrix

$$\theta(f) = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix},$$

where $f_{jk} \in [M_k, M_j]$, is a bijection. In addition,

(1) $\theta(f+g) = \theta(f) + \theta(g)$, so θ is an isomorphism $[X, X] \to \bigoplus_{j,k=1,2} [M_k, M_j]$. (2) $\theta(fg) = \theta(f)\theta(g)$, where fg denotes composition in [X, X] and $\theta(f)\theta(g)$ denotes matrix multiplication.

Further, [3] also introduced the forms of the homomorphism induced by f on homotopy, homology, and cohomology groups, respectively.

Now, we determine the form of the homomorphism induced by f on cohomotogy groups.

Proposition 3.4. For any $f \in [X, X]$, we have

$$f^{\sharp k}(\gamma_1, \gamma_2) = (f_{11}^{\sharp k}(\gamma_1) + f_{21}^{\sharp k}(\gamma_2), f_{12}^{\sharp k}(\gamma_1) + f_{22}^{\sharp k}(\gamma_2)),$$

where $\gamma_1 \in \pi^k(M_1)$ and $\gamma_2 \in \pi^k(M_2)$.

Proof. For any $f \in [X, X]$, we identify that

$$f = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix}.$$

Thus, f induces the homomorphism $f^{\sharp k}$ on cohomotopy groups as follows:

$$f^{\sharp k} = \begin{pmatrix} f_{11}^{\sharp k} & f_{12}^{\sharp k} \\ f_{21}^{\sharp k} & f_{22}^{\sharp k} \end{pmatrix}$$

Because $\pi^k(X) = \pi^k(M_1) \oplus \pi^k(M_2)$, we are able to identify $\gamma \in \pi^k(X)$ as $\gamma = (\gamma_1, \gamma_2)$, for some $\gamma_i \in \pi^k(M_i)$. Then

$$f^{\sharp k}(\gamma) = \gamma f = (\gamma_1, \gamma_2) \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix}$$

= $(\gamma_1 f_{11} + \gamma_2 f_{21}, \gamma_1 f_{12} + \gamma_2 f_{22})$
= $(f^{\sharp k}_{11}(\gamma_1) + f^{\sharp k}_{21}(\gamma_2), f^{\sharp k}_{12}(\gamma_1) + f^{\sharp k}_{22}(\gamma_2)).$

Proposition 3.5. If $f \in \mathcal{E}_k^{\sharp}(X)$, then

(3.2)
$$f^{\sharp k} = \begin{pmatrix} 1_{\pi^k(M_1)} & 0\\ 0 & 1_{\pi^k(M_2)} \end{pmatrix}.$$

Proof. Because f induces the identity on $\pi^k(X)$, $f^{\sharp k} = id_{\pi^k(X)} = 1_X^{\sharp k}$, where $1_X \in [X, X]$ is the identity map. As $1_X = \begin{pmatrix} 1_{M_1} & 0 \\ 0 & 1_{M_2} \end{pmatrix}$, we have

$$f^{\sharp k} = 1_X^{\sharp k} = \begin{pmatrix} 1_{\pi^k(M_1)} & 0\\ 0 & 1_{\pi^k(M_2)} \end{pmatrix}.$$

Here, we review the group of self homotopy equivalences of Moore space. Let p be a positive integer. In [11], Sieradski proved the following result by using the universal coefficient theorem for homotopy:

$$\mathcal{E}(M(\mathbb{Z}_p, n)) \cong \begin{cases} \mathbb{Z}_p \rtimes \mathbb{Z}_p^* & n = 2\\ \mathbb{Z}_{(2,p)} \rtimes \mathbb{Z}_p^* & n \ge 3 \end{cases}$$

where \mathbb{Z}_p^* is the automorphism group of \mathbb{Z}_p .

Our computations require us to determine the definite forms of elements in $\mathcal{E}(M(\mathbb{Z}_p, n))$ and we use the concept of the self-closeness number introduced in [5] for this purpose. Because the Moore space of type (G, n) has the self closeness number n by [5, Corollary 3], $\mathcal{A}^n_{\sharp}(M(\mathbb{Z}_p, n)) = \mathcal{E}(M(\mathbb{Z}_p, n))$ by [5, Definition 2.1 or Theorem 4], where $\mathcal{A}^n_{\sharp}(M(\mathbb{Z}_p, n))$ is the set of homotopy classes of self-maps of $M(\mathbb{Z}_p, n)$ that induce an automorphism of $\pi_i(X)$ for $i = 0, 1, \ldots, n$. To determine the definite forms of elements in $\mathcal{E}(M(\mathbb{Z}_p, n))$, we compute $\mathcal{A}^n_{\sharp}(M(\mathbb{Z}_p, n))$ rather than $\mathcal{E}(M(\mathbb{Z}_p, n))$.

Consider the mapping cone sequence

$$S^n \xrightarrow{p} S^n \xrightarrow{i} S^n \cup_n e^{n+1} \xrightarrow{\pi} S^{n+1} \xrightarrow{p} S^{n+1},$$

where p is a map of degree p, i is the inclusion and π is the quotient map.

Theorem 3.6. Let $X = M(\mathbb{Z}_p, n)$ be a Moore space. Then we have

$$\mathcal{A}^{n}_{\sharp}(X) = \begin{cases} \{k \cdot 1_{X} | (k, p) = 1\} & p \equiv 1 \pmod{2}, \\ \{\ell \cdot i \circ \eta_{n} \circ \pi + k \cdot 1_{X} | (k, p) = 1\} & p \equiv 0 \pmod{4}, \\ \{k \cdot 1_{X}, (k + p) \cdot 1_{X} | (k, p) = 1\} & p \equiv 2 \pmod{4}. \end{cases}$$

Proof. We first note that $\pi_n(X) \cong \mathbb{Z}_p\{i_{\sharp}(\iota_n)\}$. Suppose that p is odd. Then $[X, X] = \mathbb{Z}_p\{1_X\}$. Moreover, we have

$$1_{X\sharp}(i_{\sharp}(\iota_n)) = 1_X \circ i \circ \iota_n = i_{\sharp}(\iota_n).$$

Thus, $(k \cdot 1_X)_{\sharp}(i_{\sharp}(\iota_n)) = k \cdot (i_{\sharp}(\iota_n))$. It follows that

$$\mathcal{A}^{n}_{\sharp}(X) = \{k \cdot 1_{X} \,|\, (k, p) = 1\} = \mathbb{Z}^{*}_{p}.$$

Suppose that $p \equiv 0 \pmod{4}$. In this case,

$$[X,X] = \mathbb{Z}_2 \oplus \mathbb{Z}_p\{i \circ \eta_n \circ \pi, 1_X\}.$$

Because $1_{X\sharp}(i_{\sharp}(\iota_n)) = i_{\sharp}(\iota_n)$ and $(i \circ \eta_n \circ \pi)_{\sharp}(i_{\sharp}(\iota_n)) = i \circ \eta_n \circ \pi \circ i \circ \iota_n = 0$, we have

$$(\ell \cdot (i \circ \eta_n \circ \pi) + k \cdot 1_X)_{\sharp}(i_{\sharp}(\iota_n)) = (k \cdot 1_X)_{\sharp}(i_{\sharp}(\iota_n)) = k \cdot (i_{\sharp}(\iota_n))$$

for $\ell \in \mathbb{Z}_2$ and $k \in \mathbb{Z}_p$. Therefore

$$\mathcal{A}^n_{\mathsf{t}}(X) = \{\ell \cdot (i \circ \eta_n \circ \pi) + k \cdot \mathbf{1}_X \,|\, (k, p) = 1\}.$$

Suppose that $p \equiv 2 \pmod{4}$. In this case, we have $[X, X] = \mathbb{Z}_{2p}\{1_X\}$. As $k \cdot 1_{X\sharp}(i_{\sharp}(\iota_n)) = k \cdot i_{\sharp}(\iota_n)$ for $0 < k \le p$ and $(p+k) \cdot 1_{X\sharp}(i_{\sharp}(\iota_n)) = k \cdot i_{\sharp}(\iota_n)$ for $0 < k \le p$, we have

$$\mathcal{A}^{n}_{\sharp}(X) = \{k \cdot 1_{X} \mid (k, p) = 1, 1 < k \le p\} \cup \{(p+k) \cdot 1_{X} \mid (k, p) = 1, 0 < k < p\}.$$

4. Computation of $\mathcal{E}_k^{\sharp}(M(\mathbb{Z}_p, n))$

In this section, we compute $\mathcal{E}_k^{\sharp}(M(\mathbb{Z}_p, n))$ and determine their generators for k = n + 1, n, and n - 1. Throughout this section, we let $X = M(\mathbb{Z}_p, n)$.

Theorem 4.1. For $\mathcal{E}_{n+1}^{\sharp}(X)$, we have the following table:

	p odd	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_{n+1}^{\sharp}(X)$	1	\mathbb{Z}_2	\mathbb{Z}_2
generators	1_X	$\ell i \circ \eta_n \circ q \oplus 1_X$	$(\ell+1)1_X$

Proof. Because $\pi^k(X) = 0$ for k > n + 1 by Theorem 3.3, it is sufficient to consider the (n + 1)-th cohomotopy group of X. From Table 1, $\pi^{n+1}(X) = \mathbb{Z}_p\{\iota_{n+1} \circ q\}.$

<u>Case 1.</u> Let p be odd.

By Theorem 3.6, for each $f \in \mathcal{E}(X)$, $f = k \mathbb{1}_X$ for some k such that $0 \le k \le p-1$ and (k, p) = 1. Thus, we have

$$f^{\sharp n+1}(\iota_{n+1} \circ \pi) = \iota_{n+1} \circ \pi \circ (k1_X) = k(\iota_{n+1} \circ \pi \circ 1_X) = k(\iota_{n+1} \circ \pi).$$

Therefore, to ensure that $f^{\sharp n+1} = 1_{\pi_{n+1}}$ holds, k is require to be 1. Hence $\mathcal{E}_{n+1}^{\sharp}(X) \cong 1\{1_X\}.$

<u>Case 2.</u> Let $p \equiv 0 \pmod{2}$.

By Theorem 3.6, for each $f \in \mathcal{E}(X)$, $f = \ell i \circ \eta_n \circ \pi \oplus k \mathbf{1}_X$, for some $\ell = 0, 1$, where k is an integer such that $0 \le k \le p - 1$ and (k, p) = 1. Thus, we have

$$f^{\sharp n+1}(\iota_{n+1} \circ \pi) = \iota_{n+1} \circ \pi (\ell i \circ \eta_n \circ \pi \oplus k \mathbb{1}_X)$$
$$= \ell \iota_{n+1} \circ \pi \circ i \circ \eta_n \circ \pi \oplus k \iota_{n+1} \circ \pi \circ \mathbb{1}_X$$
$$= k \iota_{n+1} \circ \pi$$

because $q \circ i$ is homotopic to the constant map. Thus k is require to be 1 and $\ell = 0$ or 1 to ensure that $f^{\sharp n+1} = 1_{\pi_{n+1}}$ holds. Hence

$$\mathcal{E}_{n+1}^{\sharp}(X) \cong \mathbb{Z}_2\{\ell i \circ \eta_n \circ q \oplus 1_X | \ \ell = 0, 1\}.$$

<u>Case 3.</u> Let $p \equiv 2 \pmod{4}$.

By Theorem 3.6, for each $f \in \mathcal{E}(X)$, $f = (k + \ell)1_X$ for some k and ℓ such that $0 \le k \le p - 1$, (k, p) = 1 and $\ell = 0, p$. Thus, we have

$$f^{\sharp n+1}(\iota_{n+1} \circ \pi) = (k+\ell)(\iota_{n+1} \circ \pi \circ 1_X) = (k+\ell)\iota_{n+1} \circ \pi.$$

Thus k is require to be 1 and $\ell = 0$ or p to ensure that $f^{\sharp n+1} = 1_{\pi_{n+1}}$ holds. Hence,

$$\mathcal{E}_{n+1}^{\sharp}(X) \cong \mathbb{Z}_2\{(\ell+1)1_X \mid \ell = 0, p\}.$$

Theorem 4.2. For $\mathcal{E}_n^{\sharp}(X)$, we have the following table:

	p odd	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_n^{\sharp}(X)$	1	\mathbb{Z}_2	\mathbb{Z}_2
generators	1_X	$1_X \oplus \ell i \circ \eta_n \circ \pi$	$(\ell+1)1_X$

Proof. We first note that $\mathcal{E}_n^{\sharp}(X) \subseteq \mathcal{E}_{n+1}^{\sharp}(X)$. From Table 1,

$$\pi^n(X) = \begin{cases} 0 & p \equiv 1 \pmod{2}, \\ \mathbb{Z}_2\{\eta_n \circ \pi\} & p \equiv 0 \pmod{2}. \end{cases}$$

<u>Case 1.</u> Let p be odd.

By Theorem 4.1, $\mathcal{E}_n^{\sharp}(X) \subseteq \mathcal{E}_{n+1}^{\sharp}(X) \cong 1$.

<u>Case 2.</u> Let $p \equiv 0 \pmod{4}$.

By Theorem 4.1, for each $f \in \mathcal{E}(X)$, we have $f = \ell i \circ \eta_n \circ \pi \oplus 1_X$ for $\ell = 0, 1$. Thus, we have

$$f^{\sharp n}(\eta_n \circ \pi) = \eta_n \circ \pi \circ (\ell i \circ \eta_n \circ \pi \oplus 1_X)$$
$$= \ell \eta_n \circ \pi \circ i \circ \eta_n \circ \pi \oplus \eta_n \circ \pi \circ 1_X$$
$$= \eta_n \circ \pi$$

because $\pi \circ i$ is homotopic to the constant map. Thus for any $\ell = 0, 1, f^{\sharp n} = 1_{\pi_n}$ holds. Hence,

$$\mathcal{E}_n^{\sharp}(X) \cong \mathbb{Z}_2\{\ell i \circ \eta_n \circ q \oplus 1_X | \ell = 0, 1\}$$

<u>Case 3.</u> Let $p \equiv 2 \pmod{4}$.

By Theorem 4.1, for each $f \in \mathcal{E}(X)$, $f = (\ell + 1)1_X$, for $\ell = 0, p$. Thus, we have

$$f^{\sharp n}(\eta_n \circ \pi) = (\ell+1)(\eta_n \circ \pi \circ 1_X) = (\ell+1)\eta_n \circ \pi.$$

Therefore, for any $\ell = 0, p, f^{\sharp n} = 1_{\pi_n}$ holds. Hence,

$$\mathcal{E}_n^{\sharp}(X) \cong \mathbb{Z}_2\{(1+\ell)1_X | \ell = 0, p\}.$$

Theorem 4.3. If n > 3, then $\mathcal{E}_{n-1}^{\sharp}(M(\mathbb{Z}_p, n)) = 1\{1_{M(\mathbb{Z}_p, n)}\}.$

Proof. First we note that $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X)$ and

$$\pi^{n-1}(X) = \begin{cases} 0 & p : \text{odd} \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2\{\bar{\eta}_{n-1}, \eta_{n-1}^2 \circ q\} & p \equiv 0 \pmod{4} \\ \mathbb{Z}_4\{\eta_{n-1}^2 \circ q\} & p \equiv 2 \pmod{4} \end{cases}$$

by Table 1.

In case that p is odd, it is clear because $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X) \cong 1$ by Theorem 4.2.

Suppose $p \equiv 0 \pmod{4}$. By Theorem 4.2, for each $f \in \mathcal{E}(X)$, $f = \ell i \circ \eta_n \circ q \oplus 1_X$ for $\ell = 0, 1$. Thus, we have

$$f^{\sharp n-1}(\bar{\eta}_{n-1} \oplus \eta_{n-1}^2 \circ q) = (\bar{\eta}_{n-1} \oplus \eta_{n-1}^2 \circ q) \circ (\ell i \circ \eta_n \circ q \oplus 1_X)$$

$$= \bar{\eta}_{n-1} \circ (\ell i \circ \eta_n \circ q \oplus 1_X)$$

$$\oplus \eta_{n-1}^2 \circ q \circ (\ell i \circ \eta_n \circ q \oplus 1_X)$$

$$= (\ell \bar{\eta}_{n-1} \circ i \circ \eta_n \circ q \oplus \bar{\eta}_{n-1} \circ 1_X)$$

$$+ (\ell \eta_{n-1}^2 \circ q \circ i \circ \eta_n \circ q \oplus \eta_{n-1}^2 \circ q \circ 1_X)$$

$$= (\ell \eta_{n-1} \circ \eta_n \circ q \oplus \bar{\eta}_{n-1}) + (\eta_{n-1}^2 \circ q \oplus 0)$$

$$= (\ell + 1)\eta_{n-1}^2 \circ q \oplus \bar{\eta}_{n-1}$$

because $q \circ i$ is homotopic to the constant map.

For $f^{\sharp n-1} = 1_{\pi_{n-1}}$ to be valid, $1 + \ell = 1$; thus $\ell = 0$. Hence, $\mathcal{E}_{n-1}^{\sharp}(X) \cong 1\{1_X\}$.

Suppose $p \equiv 2 \pmod{4}$. By Theorem 4.2, for each $f \in \mathcal{E}(X)$, $f = (\ell + 1)1_X$ for $\ell = 0, p$. Thus, we have

$$f^{\sharp n-1}(\eta_{n-1}^2) = (\ell+1)\eta_{n-1}^2 \circ q \circ 1_X = (\ell+1)\eta_{n-1}^2 \circ q.$$

If $\ell = p$, then $(\ell + 1)\eta_{n-1}^2 \circ q = 3\eta_{n-1}^2 \circ q \neq \eta_{n-1}^2 \circ q$ because $\pi^{n-1}(X) = \mathbb{Z}_4$. Thus, to ensure that $f^{\sharp n-1} = 1_{\pi_{n-1}}$ holds, ℓ is require to be 0. Hence $\mathcal{E}_{n-1}^{\sharp}(X) \cong 1\{1_X\}.$

Theorem 4.4. For $X = M(\mathbb{Z}_p, 3)$, we have the following table:

	p odd	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_{n-1}^{\sharp}(X)$	1	\mathbb{Z}_2	\mathbb{Z}_2
generators	1_X	$1_X \oplus i \circ \eta_3 \circ q$	$(p+1)1_X$

Proof. Based on the Puppe Sequence, we have

$$\pi^{2}(X) = \begin{cases} 0 & p \equiv 1 \pmod{2}, \\ \mathbb{Z}_{2}\{\eta_{2}^{2} \circ q\} & p \equiv 0 \pmod{2}. \end{cases}$$

<u>Case 1.</u> Let p be odd.

By Theorem 4.2, $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X) \cong 1$. Case 2. Let $p \equiv 0 \pmod{4}$.

By Theorem 3.6, for each $f \in \mathcal{E}(X)$, $f = k \mathbf{1}_X \oplus \ell i \circ \eta_n \circ \pi$ for some k and ℓ such that $0 \leq k \leq p - 1$, (k, p) = 1 and $\ell = 0, 1$. Thus we have

$$f^{\sharp n-1}(\eta_2^2 \circ \pi) = (\eta_2^2 \circ \pi) \circ (k \mathbf{1}_X \oplus \ell i \circ \eta_3 \circ \pi)$$
$$= k\eta_2^2 \circ \pi \circ \mathbf{1}_X \oplus \ell \eta_2^2 \circ \pi \circ i \circ \eta_3 \circ \pi$$
$$= k\eta_2^2 \circ \pi$$

because $\pi \circ i$ is homotopic to the constant map. Thus, for $f^{\sharp n-1} = 1_{\pi_{n-1}}$ to hold, k is required to be 1. Hence,

$$\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_2\{ 1_X \oplus \ell i \circ \eta_3 \circ q | \ell = 0, 1 \}.$$

<u>Case 3.</u> Let $p \equiv 2 \pmod{4}$.

By Theorem 3.6, for each $f \in \mathcal{E}(X)$, $f = (k + \ell)1_X$ for some k and l such that $0 \le k \le p - 1$, (k, p) = 1 and $\ell = 0, p$. Thus, we have

$$f^{\sharp n-1}(\eta_2^2 \circ q) = (k+\ell)\eta_2^2 \circ q \circ 1_X = (k+\ell)\eta_2^2 \circ q.$$

Therefore, to ensure that $f^{\sharp n-1} = 1_{\pi_{n-1}}$ holds, k is required to be 1. Hence,

$$\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_{2}\{(\ell+1)1_{X} | \ell=0, p\}.$$

5. Computation of $\mathcal{E}_k^{\sharp}(C(\mathbb{Z}_p, n))$

In this section, we compute $\mathcal{E}_k^{\sharp}(C(\mathbb{Z}_p, n))$ and determine their generators for k = n, n-1 and n-2. Throughout this section, we let $X = C(\mathbb{Z}_p, n)$ and $M_2 = M(\mathbb{Z}_p, n-1)$.

First of all, we determine the generators of [X, X] and $[X, S^n]$. It is well known that

$$C(\mathbb{Z}_p, n) = M(\mathbb{Z}, n) \lor M(\mathbb{Z}_p, n-1) = S^n \lor M(\mathbb{Z}_p, n-1)$$

for n > 3. Thus we have

$$[X,X] \cong [S^n,X] \oplus [M_2,X]$$

and by Proposition 2.1,

$$[X,X] \cong [X,S^n] \oplus [X,M_2].$$

Consequently,

$$[X,X] \cong [S^n,S^n] \oplus [M_2,S^n] \oplus [S^n,M_2] \oplus [M_2,M_2].$$

In [3], we have

$$\mathcal{E}(X) = \mathcal{E}(S^n) \oplus [M_2, S^n] \oplus [S^n, M_2] \oplus \mathcal{E}(M_2).$$

Consider the mapping cone sequence

$$S^n \xrightarrow{p} S^n \xrightarrow{i} M(\mathbb{Z}_p, n) \xrightarrow{\pi} S^{n+1} \xrightarrow{p} S^{n+1}$$

and let $i_1: S^n \to X$ and $i_2: M_2 \to X$ be inclusion maps and $q_1: X \to S^n$ and $q_2: X \to M_2$ be projection maps.

Then, from Table 1 and Theorem 3.6, we have the following lemmas.

Lemma 5.1. If $i_1 : S^n \to X$ and $i_2 : M_2 \to X$ are inclusion maps and $q_1 : X \to S^n$ and $q_2 : X \to M_2$ are projection maps, then we have:

$p\equiv 1 \pmod{2}$	[X,X]	$\mathbb{Z}\oplus\mathbb{Z}_p\oplus\mathbb{Z}_p$
	Generators	$i_1 \circ \iota_n \circ q_1, \ i_1 \circ \iota_n \circ \pi \circ q_2, \ i_1 \circ 1_{M_2} \circ q_2$
	[X, X]	$\mathbb{Z}\oplus\mathbb{Z}_p\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus\mathbb{Z}_p$
$p \equiv 0 \pmod{4}$	Generators	$i_1 \circ \iota_n \circ q_1, \ i_1 \circ \iota_n \circ \pi \circ q_2,$
	Generators	$i_2 \circ i \circ \eta_{n-1} \circ q_1, \ i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2, \ i_2 \circ 1_{M_2} \circ q_2$
$p \equiv 2 \pmod{4}$	[X, X]	$\mathbb{Z}\oplus\mathbb{Z}_p\oplus\mathbb{Z}_2\oplus\mathbb{Z}_{2p}$
$p = 2 \pmod{4}$	Generators	$i_1 \circ \iota_n \circ q_1, \ i_1 \circ \iota_n \circ \pi \circ q_2, \ i_2 \circ i \circ \eta_{n-1} \circ q_1, \ i_2 \circ 1_{M_2} \circ q_2$

As $\mathcal{E}(S^n) \cong \mathbb{Z}_2$, we have the following lemma.

Lemma 5.2. $\mathcal{E}(X)$ is isomorphic to

$p \equiv 1 \pmod{2}$	$\mathbb{Z}_2\oplus\mathbb{Z}_p\oplus(\mathbb{Z}_p^*)$
$p \equiv 0 \pmod{4}$	$\mathbb{Z}_2\oplus\mathbb{Z}_p\oplus\mathbb{Z}_2\oplus(\mathbb{Z}_2 times\mathbb{Z}_p^*)$
$p \equiv 2 \pmod{4}$	$\mathbb{Z}_2\oplus\mathbb{Z}_p\oplus\mathbb{Z}_2\oplus(\mathbb{Z}_2 times\mathbb{Z}_p^*)$

By Proposition 2.1,

$$\pi^r(X) = \pi^r(S^n) \oplus \pi^r(M(\mathbb{Z}_p, n-1)).$$

Thus, we have the following lemma from Table 1,

Lemma 5.3. For $\pi^r(X)$, we have the following table:

		$\pi^r(X)$	Generators
r = n		$\mathbb{Z}\oplus\mathbb{Z}_p$	$\iota_n \circ q_1, \ \iota_n \circ \pi \circ q_2$
r = n - 1	$p \equiv 1 \pmod{2}$ $p \equiv 0 \pmod{2}$	\mathbb{Z}_2	$\eta_{n-1} \circ q_1$
I = II = 1	$p \equiv 0 \pmod{2}$	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	$\eta_{n-1} \circ q_1, \ \eta_{n-1} \circ \pi \circ q_2$
	$p \equiv 1 \pmod{2}$	\mathbb{Z}_2	$\eta_{n-2}^2 \circ q_1$
r = n - 2	$p \equiv 0 \pmod{4}$ $p \equiv 2 \pmod{4}$	$\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2$	$\eta_{n-2}^2 \circ q_1, \ \eta_{n-2}^2 \circ \pi \circ q_2, \ \bar{\eta}_n \circ q_2$
	$p \equiv 2 \pmod{4}$	$\mathbb{Z}_2\oplus\mathbb{Z}_4$	$\eta_{n-2}^2 \circ q_1, \ ar\eta_n \circ q_2$

Now, we compute $\mathcal{E}_k^{\sharp}(X)$ and determine their generators for k = n, n - 1, and n - 2.

Theorem 5.4. For $\mathcal{E}_n^{\sharp}(X)$, we have the following table:

	$p \equiv 1 \pmod{2}$	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_n^{\sharp}(X)$	1	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	$\mathbb{Z}_2\oplus\mathbb{Z}_2$

Proof. Because $\pi^k(X) = 0$ for k > n, it is sufficient to consider the case that k = n. From Lemma 5.3, $\pi^n(X) = \mathbb{Z} \oplus \mathbb{Z}_p\{\iota_n \circ q_1, \iota_n \circ \pi \circ q_2\}$. By Proposition 3.4, each $f \in \mathcal{E}(X)$ can be identified as

$$f = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix}.$$

Let $\gamma = (\gamma_1, \gamma_2) = (\iota_n \circ q_1, \iota_n \circ \pi \circ q_2)$ be the generator. Case 1. Let p be odd.

By Lemma 5.2, for each $f \in \mathcal{E}(X)$, we have

$$f_{11} = si_1 \circ \iota_n \circ q_1, f_{12} = ti_1 \circ \iota_n \circ \pi \circ q_2, f_{21} = 0, f_{22} = ki_1 \circ 1_{M_2} \circ q_2$$

for some $k,\,s$ and t such that $0\leq t\leq p-1,\,0\leq k\leq p-1$ and $(k,p)=1,\,s=-1,1.$ Thus we have

$$\begin{aligned} f_{11}^{\sharp n}(\gamma_1) &= \iota_n \circ q_1 \circ s(i_1 \circ \iota_n \circ q_1) \\ &= s\iota_n \circ q_1 \circ i_1 \circ \iota_n \circ q_1 = s\iota_n \circ q_1, \\ f_{12}^{\sharp n}(\gamma_1) &= \iota_n \circ q_1 \circ t(i_1 \circ \iota_n \circ \pi \circ q_2) \\ &= t\iota_n \circ q_1 \circ i_1 \circ \iota_n \circ \pi \circ q_2 = t\iota_n \circ \pi \circ q_2, \end{aligned}$$

$$f_{22}^{\sharp n}(\gamma_2) = \iota_n \circ \pi \circ q_2 \circ (ki_2 \circ 1_{M_2} \circ q_2) = k\iota_n \circ \pi \circ q_2.$$

By Proposition 3.5, s = 1, t = 0 and k = 1. Hence

$$\mathcal{E}_n^{\sharp}(X) \cong \left\{ \begin{pmatrix} i_1 \circ \iota_n \circ q_1 & 0\\ 0 & i_2 \circ 1_{M_2} \circ q_2 \end{pmatrix} \right\}.$$

<u>Case 2.</u> $p \equiv 0 \pmod{4}$.

By Lemma 5.2, for each $f \in \mathcal{E}(X)$, we have

$$f_{11} = si_1 \circ \iota_n \circ q_1,$$

$$f_{12} = ti_1 \circ \iota_n \circ \pi \circ q_2,$$

$$f_{21} = mi_2 \circ i \circ \eta_{n-1} \circ q_1,$$

$$f_{22} = \ell i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2 \oplus ki_2 \circ 1_{M_2} \circ q_2$$

for k, ℓ, m, s and t such that $0 \le t \le p-1, 0 \le k \le p-1, m, \ell = 0, 1, s = -1, 1$ and (k, p) = 1. Thus we have

$$f_{11}^{\sharp n}(\gamma_1) = \iota_n \circ q_1 \circ s(i_1 \circ \iota_n \circ q_1)$$

= $s\iota_n \circ q_1 \circ i_1 \circ \iota_n \circ q_1 = s\iota_n \circ q_1,$
 $f_{12}^{\sharp n}(\gamma_1) = \iota_n \circ q_1 \circ t(i_1 \circ \iota_n \circ \pi \circ q_2)$

$$= t\iota_n \circ q_1 \circ i_1 \circ \iota_n \circ q \circ q_2 = t\iota_n \circ \pi \circ q_2,$$

$$f_{21}^{\sharp n}(\gamma_2) = \iota_n \circ \pi \circ q_2 \circ m(i_2 \circ i \circ \eta_{n-1} \circ q_1)$$

$$= m\iota_n \circ q \circ q_2 \circ i_2 \circ i \circ \eta_{n-1} \circ q_1 = 0,$$

$$f_{22}^{\sharp n}(\gamma_2) = \iota_n \circ \pi \circ q_2 \circ (\ell i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2 \oplus k i_2 \circ 1_{M_2} \circ q_2)$$

$$= \ell\iota_n \circ \pi \circ q_2 \circ i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2 \oplus k\iota_n \circ \pi \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2$$

$$= k\iota_n \circ \pi \circ q_2$$

because $\pi \circ i$ is homotopic to the constant map.

By Proposition 3.5, s = 1, t = 0, k = 1 and $m, \ell = 0, 1$. Hence

$$\mathcal{E}_n^{\sharp}(X) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \left\{ \left. \begin{pmatrix} i_1 \circ \iota_n \circ q_1 & 0\\ mi_2 \circ i \circ \eta_{n-1} \circ q_1 & \ell \alpha \oplus i_2 \circ 1_{M_2} \circ q_2 \end{pmatrix} \right| m, \ell = 0, 1 \right\},\$$

where $\alpha = i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2$. Case 3. Let $p \equiv 2 \pmod{4}$.

By Lemma 5.2, for each $f \in \mathcal{E}(X)$, we have

$$\begin{split} f_{11} &= si_1 \circ \iota_n \circ q_1, \\ f_{12} &= ti_1 \circ \iota_n \circ \pi \circ q_2, \\ f_{21} &= mi_2 \circ i\eta_{n-1} \circ q_1, \\ f_{22} &= (k+\ell)i_2 \circ 1_{M_2} \circ q_2 \end{split}$$

for $k,\,\ell,\,m,\,s$ and t such that $0\leq t\leq p-1,\,0\leq k\leq p-1,\,m=0,1,\,s=-1,1,$ $\ell=0,p$ and (k,p)=1. Thus we have

$$\begin{split} f_{11}^{\sharp n}(\gamma_1) &= \iota_n \circ q_1 \circ s(i_1 \circ \iota_n \circ q_1) \\ &= s\iota_n \circ q_1 \circ i_1 \circ \iota_n \circ q_1 = s\iota_n \circ q_1, \\ f_{12}^{\sharp n}(\gamma_1) &= \iota_n \circ q_1 \circ t(i_1 \circ \iota_n \circ \pi \circ q_2) \\ &= t\iota_n \circ q_1 \circ i_1 \circ \iota_n \circ \pi \circ q_2 = t\iota_n \circ \pi \circ q_2, \\ f_{21}^{\sharp n}(\gamma_2) &= \iota_n \circ q \circ q_2 \circ m(i_2 \circ i\eta_{n-1} \circ q_1) \\ &= m\iota_n \circ q \circ q_2 \circ i_2 \circ i\eta_{n-1} \circ q_1 = 0, \\ f_{22}^{\sharp n}(\gamma_2) &= \iota_n \circ \pi \circ q_2 \circ (k+\ell)(i_2 \circ 1_{M_2} \circ q_2) \\ &= (k+\ell)\iota_n \circ \pi \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2 = (k+\ell)\iota_n \circ \pi \circ q_2. \end{split}$$

because $\pi \circ i$ is homotopic to the constant map.

By Proposition 3.5, $s = 1, t = 0, k = 1, \ell = 0, p$ and m = 0, 1. Hence

$$\begin{aligned} \mathcal{E}_n^{\sharp}(X) &\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \left\{ \left. \begin{pmatrix} i_1 \circ \iota_n \circ q_1 & 0\\ m i_2 \circ i \circ \eta_{n-1} \circ q_1 & (\ell+1) i_2 \circ 1_{M_2} \circ q_2 \end{pmatrix} \right| \\ m &= 0, 1 \text{ and } \ell = 0, p \right\}. \end{aligned}$$

Theorem 5.5. For $\mathcal{E}_{n-1}^{\sharp}(X)$, we have the following table:

	$p \equiv 1 \pmod{2}$	$p \equiv 0 \pmod{4}$	$p \equiv 2 \pmod{4}$
$\mathcal{E}_{n-1}^{\sharp}(X)$	1	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	$\mathbb{Z}_2\oplus\mathbb{Z}_2$

Proof. From Lemma 5.3, we have

$$\pi^{n-1}(X) = \begin{cases} \mathbb{Z}_2\{\eta_{n-1} \circ q_1\} & p \equiv 1 \pmod{2}, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2\{\eta_{n-1} \circ q_1, \eta_{n-1} \circ \pi \circ q_2\} & p \equiv 0 \pmod{2}. \end{cases}$$

<u>Case 1.</u> Let p be odd.

By Theorem 5.4, we have $\mathcal{E}_{n-1}^{\sharp}(X) \subseteq \mathcal{E}_{n}^{\sharp}(X) \cong 1$. Case 2. Let $p \equiv 0 \pmod{4}$.

By Theorem 5.4, for each $f \in \mathcal{E}(X)$, we have

$$\begin{split} f_{11} &= i_1 \circ \iota_n \circ q_1, \\ f_{12} &= 0, \\ f_{21} &= m i_2 \circ i \circ \eta_{n-1} \circ q_1, \\ f_{22} &= \ell i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2 \oplus i_2 \circ 1_{M_2} \circ q_2 \end{split}$$

for $m, \ell = 0, 1$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22} ; however, we have

$$\begin{split} f_{21}^{\sharp n-1}(\gamma_2) &= \eta_{n-1} \circ \pi \circ q_2 \circ m(i_2 \circ i \circ \eta_{n-1} \circ q_1) \\ &= m\eta_{n-1} \circ \pi \circ q_2 \circ i_2 \circ i \circ \eta_{n-1} \circ q_1 = 0, \\ f_{22}^{\sharp n-1}(\gamma_2) &= \eta_{n-1} \circ \pi \circ q_2 \circ (\ell i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2 \oplus i_2 \circ 1_{M_2} \circ q_2) \\ &= \ell\eta_{n-1} \circ \pi \circ q_2 \circ i_2 \circ i \circ \eta_{n-1} \circ \pi \circ q_2 \oplus \eta_{n-1} \circ \pi \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2 \\ &= \eta_{n-1} \circ \pi \circ q_2 \end{split}$$

because $\pi \circ i$ is homotopic to the constant map.

By Proposition 3.5, $m, \ell = 0, 1$. Hence,

$$\begin{aligned} \mathcal{E}_{n-1}^{\sharp}(X) &\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \left\{ \left. \begin{pmatrix} i_1 \circ \iota_n \circ q_1 & 0\\ m i_2 \circ i \circ \eta_{n-1} \circ q_1 & \ell \alpha \oplus i_2 \circ 1_{M_2} \circ q_2 \end{pmatrix} \right| \\ \ell &= 0, 1 \text{ and } m = 0, 1 \right\}, \end{aligned}$$

where $\alpha = i_2 \circ i \circ \eta_{n-1} \circ q \circ q_2$.

<u>Case 3.</u> Let $p \equiv 2 \pmod{4}$

By Theorem 5.4, for each $f \in \mathcal{E}(X)$, we have

$$f_{11} = i_1 \circ \iota_n \circ q_1,$$

$$f_{12} = 0,$$

$$f_{21} = mi_2 \circ i\eta_{n-1} \circ q_1,$$

$$f_{22} = (1+\ell)i_2 \circ 1_{M_2} \circ q_2$$

for $m = 0, 1, \ell = 0, p$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22} ; however, we have

$$f_{21}^{\sharp n-1}(\gamma_2) = \eta_{n-1} \circ \pi \circ q_2 \circ m(i_2 \circ i\eta_{n-1} \circ q_1)$$

$$= m\eta_{n-1} \circ \pi \circ q_2 \circ i_2 \circ i\eta_{n-1} \circ q_1 = 0,$$

$$f_{22}^{\sharp n-1}(\gamma_2) = \eta_{n-1} \circ \pi \circ q_2 \circ (1+\ell)(i_2 \circ 1_{M_2} \circ q_2)$$

$$= (1+\ell)\eta_{n-1} \circ \pi \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2 = (1+\ell)\eta_{n-1} \circ \pi \circ q_2$$

because $q \circ i$ is homotopic to the constant map. By Proposition 3.5, $\ell = 0, p$ and m = 0, 1. Hence

$$\mathcal{E}_{n-1}^{\sharp}(X) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \left\{ \begin{array}{cc} i_1 \circ \iota_n \circ q_1 & 0\\ i_2 \circ i \circ \eta_{n-1} \circ q_1 & (\ell+1)i_2 \circ 1_{M_2} \circ q_2 \end{array} \right\} \\ \ell = 0, p \text{ and } m = 0, 1 \right\}. \qquad \Box$$

Theorem 5.6. $\mathcal{E}_{n-2}^{\sharp}(C(\mathbb{Z}_p, n)) \cong 1.$

Proof. From Theorem 5.3,

$$\pi^{n-2}(X) = \begin{cases} \mathbb{Z}_2\{\eta_{n-2}^2 \circ q_1\} & p \equiv 1 \pmod{2}, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2\{\eta_{n-2}^2 \circ q_1, \eta_{n-2}^2 \circ \pi \circ q_2, \bar{\eta}_n \circ q_2\} & p \equiv 0 \pmod{4}, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_4\{\eta_{n-2}^2 \circ q_1, \bar{\eta}_n \circ q_2\} & p \equiv 2 \pmod{4}. \end{cases}$$

<u>Case 1.</u> Let p be odd. By Theorem 5.5, $\mathcal{E}_{n-2}^{\sharp}(X) \subseteq \mathcal{E}_{n-1}^{\sharp}(X) \cong 1$. <u>Case 2.</u> Let $p \equiv 0 \pmod{4}$. Then, the generator of $\pi^{n-2}(X)$ is

$$\gamma = (\gamma_1, \gamma_2) = (\eta_{n-2}^2 \circ q_1, \eta_{n-2}^2 \circ \pi \circ q_2 \oplus \overline{\eta}_n \circ q_2).$$

By Theorem 5.5, for each $f \in \mathcal{E}(X)$, we have

$$f_{11} = i_1 \circ \iota_n \circ q_1,$$

$$f_{12} = 0,$$

$$f_{21} = mi_2 \circ i \circ \eta_{n-1} \circ q_1,$$

$$f_{22} = \ell \alpha \oplus i_2 \circ 1_{M_2} \circ q_2$$

for $m, \ell = 0, 1$ and $\alpha = i_2 \circ i \circ \eta_{n-1} \circ q \circ q_2$. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22} ; however, we have

$$\begin{split} f_{21}^{\sharp n-2}(\gamma_2) &= \eta_{n-2}^2 \circ \pi \circ q_2 \oplus \bar{\eta}_n \circ q_2 \circ m(i_2 \circ i \circ \eta_{n-1} \circ q_1) \\ &= m\eta_{n-2}^2 \circ \pi \circ q_2 \circ i_2 \circ i \circ \eta_{n-1} \circ q_1 \oplus m\bar{\eta}_n \circ q_2 \circ i_2 \circ i \circ \eta_{n-1} \circ q_1 \\ &= m\bar{\eta}_n \circ i \circ \eta_n \circ q_1 = m\eta_{n-2}\eta_{n-1} \circ q_1 \\ &= m\eta_{n-2}^2 \circ q_1, \\ f_{22}^{\sharp n-2}(\gamma_2) &= \eta_{n-2}^2 \circ \pi \circ q_2 \oplus \bar{\eta}_n \circ q_2 \circ (\ell \alpha \oplus i_2 \circ 1_{M_2} \circ q_2) \\ &= \eta_{n-2}^2 \circ \pi \circ q_2 \circ (\ell \alpha \oplus i_2 \circ 1_{M_2} \circ q_2) + \bar{\eta}_n \circ q_2 \circ (\ell \alpha \oplus i_2 \circ 1_{M_2} \circ q_2) \\ &= \ell \eta_{n-2}^2 \circ \pi \circ q_2 \circ \alpha \oplus \eta_{n-2}^2 \circ \pi \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2 \\ &= \ell \eta_{n-2}^2 \circ \pi \circ q_2 + \ell \bar{\eta}_n \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2 \\ &= \eta_{n-2}^2 \circ \pi \circ q_2 + \ell \bar{\eta}_n \circ \eta_{n-1} \circ \pi \circ q_2 \oplus \bar{\eta}_n \circ q_2 \end{split}$$

$$= \eta_{n-2}^2 \circ \pi \circ q_2 + \ell \eta_{n-2}^2 \circ \pi \circ q_2 \oplus \overline{\eta}_n \circ q_2$$
$$= (1+\ell)\eta_{n-2}^2 \circ \pi \circ q_2 \oplus \overline{\eta}_n \circ q_2$$

because $q \circ i$ is homotopic to the constant map and $\bar{\eta}_n \circ i\eta_{n-2} = \eta_{n-2}^2 =$ $\eta_{n-2} \circ \eta_{n-1}$.

By Proposition 3.5, $\ell = 0$ and m = 0. Hence,

$$\mathcal{E}_{n-2}^{\sharp}(X) \cong \left\{ \begin{pmatrix} i_1 \circ \iota_n \circ q_1 & 0\\ 0 & i_2 \circ 1_{M_2} \circ q_2 \end{pmatrix} \right\}.$$

<u>Case 3.</u> Let $p \equiv 2 \pmod{4}$. Then the generator of $\pi^{n-2}(X)$ is $\gamma = (\gamma_1, \gamma_2) = (\eta_{n-2}^2 \circ q_1, \bar{\eta}_n \circ q_2)$. By Theorem 5.5, for each $f \in \mathcal{E}(X)$, we have

$$f_{11} = i_1 \circ \iota_n \circ q_1,$$

$$f_{12} = 0,$$

$$f_{21} = mi_2 \circ i\eta_{n-1} \circ q_1,$$

$$f_{22} = (1+\ell)i_2 \circ 1_{M_2} \circ q_2$$

for $\ell = 0, p$ and m = 0, 1. By Proposition 3.5, it is sufficient to determine f_{21} and f_{22} ; however, we have

$$f_{21}^{\sharp n-2}(\gamma_2) = \bar{\eta}_n \circ q_2 \circ m(i_2 \circ i\eta_{n-1} \circ q_1) = m\bar{\eta}_n \circ q_2 \circ i_2 \circ i\eta_{n-1} \circ q_1 = m\eta_{n-2}^2 \circ q_1, f_{22}^{\sharp n-2}(\gamma_2) = \bar{\eta}_n \circ q_2 \circ (1+\ell)(i_2 \circ 1_{M_2} \circ q_2) = (1+\ell)\bar{\eta}_n \circ q_2 \circ i_2 \circ 1_{M_2} \circ q_2 = (1+\ell)\bar{\eta}_n \circ q_2$$

because $\bar{\eta}_n \circ i\eta_{n-2} = \eta_{n-2} \circ \eta_{n-1} = \eta_{n-2}^2$.

If $\ell = p$, then $(1+p)\bar{\eta}_n \circ q_2 = 3\bar{\eta}_n \circ q_2 \neq \bar{\eta}_n \circ q_2$ because $\bar{\eta}_n \circ q_2$ has order 4. Thus, by Proposition 3.5, $\ell = 0$ and m = 0. Hence,

$$\mathcal{E}_{n-2}^{\sharp}(X) \cong 1 \left\{ \begin{pmatrix} i_1 \circ \iota_n \circ q_1 & 0\\ 0 & i_2 \circ 1_{M_2} \circ q_2 \end{pmatrix} \right\}.$$

References

- [1] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. I, Osaka J. Math. 2 (1965), 71–115.
- [2] M. Arkowitz, The group of self-homotopy equivalences a survey, Groups of selfequivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990.
- [3] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154.
- [4] H. Choi and K. Lee, Certain self homotopy equivalences on wedge products on Moore spaces, Pacific J. Math. 272 (2014), no. 1, 35–57.
- [5] _____, Certain numbers on the groups of self-homotopy equivalences, Topology Appl. **181** (2015), 104–111.
- [6] B. Gray, Homotopy Theory, Academic Press, Inc., 1975.

- [7] K. Lee, The groups of self pair homotopy equivalences, J. Korean Math. Soc. 43 (2006), no. 3, 491–506.
- [8] J. Rutter, The group of homotopy self-equivalence classes of CW-complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 275–293.
- [9] N. Sawashita, On the group of self-equivalences of the product spheres, Hiroshima Math. J. 5 (1975), 69–86.
- [10] A. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.
- [11] _____, Stabilization of self-equivalences of the pesudoprojective spaces, Michigan. Math. J. 19 (1972), 109–119.
- [12] H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ., 1962.

Ho Won Choi Department of Mathematics Korea University Seoul 702-701, Korea *E-mail address*: howon@korea.ac.kr

KEE YOUNG LEE DEPARTMENT OF MATHEMATICS KOREA UNIVERSITY SEJONG 339-700, KOREA *E-mail address*: keyolee@korea.ac.kr

Hyung Seok Oh Department of Mathematics Korea University Seoul 702-701, Korea *E-mail address*: hyungseok@korea.ac.kr