References
- 3DMacro (computer program for the seismic assessment of masonry buildings), Release 3.0 (2014), Gruppo Sismica s.r.l., Catania, Italy, www.3dmacro.it.
- Andreini, M., De Falco, A., Giresini, L. and Sassu, M. (2014), "Structural damage in the cities of Reggiolo and Carpi after the earthquake on May 2012 in Emilia Romagna", Bull. Earthq. Eng., 12(5), 2445-2480. https://doi.org/10.1007/s10518-014-9660-7
- Araujo, A., Lourenco, P.B., Oliveira, D. and Leite, J. (2012), "Seismic assessment of St James Church by means of pushover analysis - before and after the New Zealand earthquake", Open Civ. Eng. J., 6, 160-172. https://doi.org/10.2174/1874149501206010160
- Asteris, P.G., Chronopoulos, M.P., Chrysostomou, C.Z., Varum, H., Plevris, V., Kyriakides, N. and Silva, V. (2014), "Seismic vulnerability assessment of historical masonry structural systems", Eng. Struct., 62-63, 118-134. https://doi.org/10.1016/j.engstruct.2014.01.031
- Barbieri, G., Biolzi, L., Bocciarelli, M., Fregonese, L. and Frigeri, A. (2013), "Assessing the seismic vulnerability of a historical building", Eng. Struct., 57, 523-535. https://doi.org/10.1016/j.engstruct.2013.09.045
- Betti, M. and Vignoli, A. (2008), "Assessment of seismic resistance of a basilica-type church under earthquake loading: Modelling and analysis", Adv. Eng. Soft., 39(4), 258-283. https://doi.org/10.1016/j.advengsoft.2007.01.004
- Betti, M. and Vignoli, A. (2011), "Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all'Impruneta (Italy)", Construct. Build. Mater., 25(12), 4308-4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028
- Caddemi, S., Calio, I., Cannizzaro, F., Occhipinti, G. and Panto, B. (2015), "A parsimonious discrete model for the seismic assessment of monumental structures", Proceedings of the 15th International Conference on Civil, Structural and Environmental Engineering Computing, Prague, Czech Republic, September.
- Caddemi, S., Calio, I., Cannizzaro, F. and Panto, B. (2014), "The seismic assessment of historical masonry structures", Proceedings of the 14th International Conference on Civil, Structural and Environmental Engineering Computing, Naples, Italy, September.
- Calio, I., Marletta, M. and Panto, B. (2012), "A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings", Eng. Struct., 40, 327-338. https://doi.org/10.1016/j.engstruct.2012.02.039
- Calio, I. and Panto, B. (2014), "A macro-element modelling approach of Infilled Frame Structures", Comput. Struct., 143, 91-107. https://doi.org/10.1016/j.compstruc.2014.07.008
- Casapulla C. (2015), "On the resonance conditions of rigid rocking blocks", Int. J. Eng. Technol., 7(2), 760-771.
- Casapulla, C. and Argiento, L.U. (2016), "The comparative role of friction in local out-of-plane mechanisms of masonry buildings. Pushover analysis and experimental investigation", Eng. Struct., 126, 158-173. https://doi.org/10.1016/j.engstruct.2016.07.036
- Casapulla, C., Jossa, P. and Maione, A. (2010), "Rocking motion of a masonry rigid block under seismic actions: a new strategy based on the progressive correction of the resonance response", Ingegneria Sismica, 27(4), 35-48.
- Casolo, S. and Sanjustb, C.A. (2009), "Seismic analysis and strengthening design of a masonry monument by a rigid body spring model: the "Maniace Castle"of Syracuse", Eng. Struct., 31(7), 1447-1459 . https://doi.org/10.1016/j.engstruct.2009.02.030
- Doglioni, F., Moretti, A. and Petrini, V. (1994), Le Chiese e i Terremoti (in Italian), Lint Ed., Trieste, Italy.
- De Luca, A., Giordano, A. and Mele, E. (2004), "A simplified procedure for assessing the seismic capacity of masonry arches", Eng. Struct., 26(13), 1915-1929. https://doi.org/10.1016/j.engstruct.2004.07.003
- Explanatory circular 617 (2009), Istruzioni per l'applicazione delle nuove norme tecniche per le costruzioni di cui al D.M. 14.01.2008 (in Italian, Italian Minister for Infrastructures).
- Giresini, L. and Sassu, M. (2016), "Horizontally restrained rocking blocks: evaluation of the role of boundary conditions with static and dynamic approaches", Bull. Earthq. Eng., 15(1), 385-410.
- Giresini, L., Fragiacomo, M. and Sassu, M. (2016), "Rocking analysis of masonry walls interacting with roofs", Eng. Struct., 116, 107-120. https://doi.org/10.1016/j.engstruct.2016.02.041
- Giresini, L. (2015), "Energy-based method for identifying vulnerable macro-elements in historic masonry churches", Bull. Earthq. Eng., 14(3), 919-942.
- Heyman, J. (1999), The Stone Skeleton: Structural Engineering of Masonry Architecture, Cambridge University Press, Cambridge, United Kingdom.
- HiStrA (Historical Structure Analysis), release 17.2.3 (2015), HiStrA s.r.l, Catania, Italy, www.histra.it
- Lourenco, P.B., Krakowiak, K.J., Fernandes, F.M. and Ramos, L.F. (2007), "Failure analysis of Monastery of Jeronimos, Lisbon: How to learn from sophisticated numerical models", Eng. Fail. Anal., 14(2), 280-300. https://doi.org/10.1016/j.engfailanal.2006.02.002
- Lourenco, P.B., Mendes, N., Ramos, L. and Oliveira, D. (2011), "On the analysis of masonry structures without box behavior", Int. J. Arch. Herit., 5(4), 369-382. https://doi.org/10.1080/15583058.2010.528824
- Lourenco, P.B., Ramos, L.F., Vasconcelos, G. and Pena, F. (2008), "Monastery of Salzedas (Portugal): Intervention in the cloister and information management", in Structural Analysis of Historic Construction, D'Ayala & Fodde eds., Taylor & Francis Group, London, United Kingdom.
- Lourenco, P.B., Trujillo, A., Mendes, N. and Ramos, L.F. (2012), "Seismic performance of the St. George of the Latins church: Lessons learned from studying masonry ruins", Eng. Struct., 40, 501-518. https://doi.org/10.1016/j.engstruct.2012.03.003
- Lourenco, P.B., Vasconcelos, G. and Ramos, L.F. (2001), "Assessment of the stability conditions of a Cistercian cloister", Proceedings of the 2nd International Congress Studies in Ancient Structures, Istanbul, Turkey, July.
- Marques, R. and Lourenco, P.B. (2011), "Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings", Comput. Struct., 89(21), 2079-2091. https://doi.org/10.1016/j.compstruc.2011.05.021
- Marques, R. and Lourenco, P.B. (2014), "Unreinforced and confined masonry buildings in seismic regions: Validation of macro-element models and cost analysis", Eng. Struct., 64, 52-67. https://doi.org/10.1016/j.engstruct.2014.01.014
- Mendes, N. and Lourenco, P. (2010), "Seismic assessment of masonry "Gaioleiros" buildings in Lisbon, Portugal", J. Earthq. Eng., 14(1), 80-101. https://doi.org/10.1080/13632460902977474
- Milani, G. and Valente, M. (2015a), "Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: non-linear dynamic analyses vs conventional static approaches", Eng. Fail. Anal., 54, 13-56. https://doi.org/10.1016/j.engfailanal.2015.03.016
- Milani, G. and Valente, M. (2015b), "Comparative pushover and limit analyses on seven masonry churches damaged by the 2012 Emilia-Romagna (Italy) seismic events: possibilities of nonlinear finite elements compared with pre-assigned failure mechanisms", Eng. Fail. Anal., 47, 129-161. https://doi.org/10.1016/j.engfailanal.2014.09.016
- Moropoulou, A., Polikreti, K., Ruf, V. and Deodatis, G. (2003), "San Francisco Monastery, Quito, Equador: characterisation of building materials, damage assessment and conservation considerations", J. Cultural Herit., 4(2), 101-108. https://doi.org/10.1016/S1296-2074(03)00021-9
- NTC - Decree containing the new Building Code (Norme Tecniche per le Costruzioni - in Italian) (2008), published on the Official Gazette no. 29, Italian Minister for Infrastructures.
- Panto, B., Cannizzaro F., Caddemi, S. and Calio, I. (2016), "3D macro-element modelling approach for seismic assessment of historical masonry churches", Adv. Eng. Soft., 97, 40-59. https://doi.org/10.1016/j.advengsoft.2016.02.009
- Rovero, L., Alecci, V., Mechelli, J., Tonietti, U. and De Stefano, M. (2016), "Masonry walls with irregular texture of L'Aquila (Italy) seismic area: validation of a method for the evaluation of masonry quality", Mater. Struct., 49(6), 2297-2314. https://doi.org/10.1617/s11527-015-0650-2
- Simulia Abaqus CAE 6.12 (2012), User's and Theory Manuals, Dassault Systemes.
Cited by
- New Frontiers on Seismic Modeling of Masonry Structures vol.3, 2017, https://doi.org/10.3389/fbuil.2017.00039
- Experimental and Analytical Investigation on the Corner Failure in Masonry Buildings: Interaction between Rocking-Sliding and Horizontal Flexure pp.1558-3066, 2018, https://doi.org/10.1080/15583058.2018.1529206
- Performance of a Far-Field Historical Church during the 2016–2017 Central Italy Earthquakes vol.33, pp.2, 2019, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001273
- Assessment of the Seismic Performance of a Historical Building Reinforced with Steel Buttress vol.23, pp.7, 2019, https://doi.org/10.1007/s12205-019-2269-2
- Nonlinear Static and Dynamic Analysis of Rocking Masonry Corners Using Rigid Macro-Block Modeling vol.19, pp.11, 2017, https://doi.org/10.1142/s0219455419501372
- Effectiveness of diagonal shear reinforcement on reinforced concrete short beams vol.17, pp.5, 2017, https://doi.org/10.12989/eas.2019.17.5.501
- Numerical determination of crack width for reinforced concrete deep beams vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.193
- Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena vol.18, pp.3, 2020, https://doi.org/10.12989/eas.2020.18.3.321
- A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections vol.35, pp.3, 2017, https://doi.org/10.12989/scs.2020.35.3.353
- Integrated Cost-Analysis Approach for Seismic and Thermal Improvement of Masonry Building Façades vol.10, pp.8, 2020, https://doi.org/10.3390/buildings10080143
- Performance-based Seismic Analysis of Rocking Masonry Façades Using Non-linear Kinematics with Frictional Resistances: A Case Study vol.15, pp.9, 2017, https://doi.org/10.1080/15583058.2019.1674944
- Discrete rotating links model for the non-linear torsion−shear behaviour of masonry joints vol.174, pp.4, 2017, https://doi.org/10.1680/jencm.21.00010