DOI QR코드

DOI QR Code

A Study on the Performance Assessment of Nuclear Fuel Debris Filtration Using the Weighted Mean

가중평균을 이용한 핵연료 이물질 여과성능 평가에 관한 연구

  • Park, Joon Kyoo (Nuclear Fuel Technology Dept., KEPCO Nuclear Fuel Co. Ltd.) ;
  • Lee, Seong Ki (Nuclear Fuel Technology Dept., KEPCO Nuclear Fuel Co. Ltd.) ;
  • Kim, Jae Hoon (School of Mechanical Engineering, Chungnam Nat'l Univ.)
  • 박준규 ((주)한전원자력연료 핵연료연구실) ;
  • 이성기 ((주)한전원자력연료 핵연료연구실) ;
  • 김재훈 (충남대학교 기계공학부)
  • Received : 2016.07.25
  • Accepted : 2016.10.17
  • Published : 2017.02.01

Abstract

Nuclear fuel requires high reliability and safety and therefore contains debris filtering devices to prevent failure-inducing debris from entering it. The debris filtering performance of nuclear fuel is one of the most important factors for fuel integrity. Therefore, the performance must be evaluated and the measurement must be reasonable. In this study, a calculation method of the comprehensive filtering efficiency using the weighted mean was proposed to establish a standard filtering efficiency index. To confirm the suitability of the proposed method, representative debris specimens were selected and the filtering efficiency with the weighted mean was compared with the efficiency of the arithmetic mean. The weighting factor of the weighted mean was introduced to produce a fair evaluation. In addition, the analysis of the debris filtering mechanism was performed according to the size of debris specimens, and the main dimensions of the filtering feature for commercial nuclear fuel.

핵연료는 고도의 신뢰성과 안전성이 요구되는 구조물로서 손상유발 이물질이 유입되지 않도록 이물질여과 기구를 포함하고 있다. 핵연료의 이물질여과 성능은 건전성에 가장 중요한 영향 인자로 합리적이고 객관적으로 평가되어야 하는 지표이다. 본 연구에서는 표준 여과효율 성능지수를 수립하고자 가중평균을 이용하여 종합 이물질여과 효율 계산 방법을 제시하였다. 제안된 방법의 적합성을 확인하기 위해 대표 이물질 시편을 선정하고 이물질여과 실험을 통해 가중평균 여과 효율을 산술평균 여과 효율과 비교하였다. 가중평균법은 성능의 변별력을 강화하고자 이물질의 통과 가능 정도를 가중인자로 사용하였다. 부가적으로 이물질 시편의 크기와 여과 기구의 주요 치수에 따른 상용 핵연료의 여과 거동 분석을 수행하였다.

Keywords

References

  1. Brown, C.A., Ford, K.L. and Yates, J., 1992, "Development of a Solution to the Debris Fretting Problem," Nuclear Engineering and Design, Vol. 135, pp. 297-305. https://doi.org/10.1016/0029-5493(92)90196-3
  2. Wilson, H. W., Scherpereel, L. R. and Sieradzki, G. B., 1996, "Debris Mitigation Features and Their Impact on Fuel Performance," Specialist Meeting on Nuclear Fuel and Control Rods, November 1996, Madrid, Spain, pp. 133-138.
  3. Linden, S. and Rudolph, M., 1996, "Development and Experience of Debris Resistant Lower Tie Plates for BWR and PWR Fuel," Specialist Meeting on Nuclear Fuel and Control Rods, November 1996, Madrid, Spain, pp. 139-148.
  4. Gotoh, K., 1999, "Development of Anti-Debris Fuel for PWR," ICONE-7222, April 19-23, Tokyo, Japan.
  5. Jung, M.-S. and Kim, K.-T., 2013, "Debris Filtering Efficiency and Its Effect on Long Term Cooling Capability," Nuclear Engineering and Design, Vol. 261, pp. 1-9. https://doi.org/10.1016/j.nucengdes.2013.03.039
  6. Park, N.-G., Park, J.-K., Kim, J.-I. and Jeon, K.-L., 2015, "PWR Fuel Debris Filtering Performance Measurement Method and Its Application," Nuclear Engineering and Design, Vol. 281, pp. 96-102. https://doi.org/10.1016/j.nucengdes.2014.11.024
  7. Jang, Y. K. and Jeon, K. L., 2010, "In-reactor Irradiation Performances of Advanced Fuels, ACE7TM, for Westinghouse Type Nuclear Power Plants," The 2010 fall conference of the Korean Society of Mechanical Engineering, pp. 343-344.
  8. Camilli, N., 2009, "Nuclear Maintenance Applications Center: Assessment of Replacement Wire Brushes," EPRI 1018488.
  9. Ryan, B. F., Joiner, B. L. and Cryer, J. D., 2005, "Minitab Handbook," 5th Ed., Thomson Brooks/Cole, pp. 292-296.