DOI QR코드

DOI QR Code

Study on the Prediction of Lateral and Yawing Behaviors of a Leading Vehicle in a Train Collision

철도차량 충돌 시 선두차량의 횡 및 요잉 거동 예측 연구

  • Kim, Jun Woo (Dept. of Rolling Stock System, Seoul Nat'l Univ. of Science and Technology) ;
  • Jeong, Eui Cheol (Dept. of Rolling Stock System, Seoul Nat'l Univ. of Science and Technology) ;
  • Koo, Jeong Seo (Dept. of Rolling Stock System, Seoul Nat'l Univ. of Science and Technology)
  • 김준우 (서울과학기술대학교 철도차량시스템공학과) ;
  • 정의철 (서울과학기술대학교 철도차량시스템공학과) ;
  • 구정서 (서울과학기술대학교 철도차량시스템공학과)
  • Received : 2016.02.26
  • Accepted : 2016.10.28
  • Published : 2017.02.01

Abstract

In this study, we derived theoretical equations for the zigzag movement of a leading vehicle, which is the most frequent behavior in train accidents, by using a simplified spring-mass model for the rolling stock. In order to solve the equations of motion, we applied the Runge-Kutta method, which is the typical numerical analysis method used for differential equations. Furthermore, the lateral displacement of the wheel-set at the wheel-rail interface was estimated using kinetic energy. In order to verify the derived equations, we compared the theoretical and simulated results under various collision conditions. The maximum relative deviations of the lateral displacements were 0.8 [%] ~ 4.7 [%] in light collisions and 0.6 [%] ~ 5.1 [%] under derailment conditions. When an accident is simulated, these theoretical equations can be used to predict the overall behavior and obtain the offset of the body-to-body link as the initial perturbation.

본 연구에서는 철도차량의 사고의 유형 중 가장 많이 발생되는 지그재깅 현상에 대해 이론 모델을 정립하여 선두차량의 지그재깅 거동에 대한 운동방정식을 도출하였다. 운동방정식을 풀기 위하여 미분방정식 수치해석법 중 가장 대표적인 Runge-Kutta 4차식을 사용하였고, 휠-레일 인터페이스에 의한 휠의 횡 변위는 운동에너지를 이용하여 추정하였다. 그리고 이론식을 검증하기 위하여 재그재깅 현상에서 가장 변위가 큰 연결기 위치에서의 횡 변위에 대해 시뮬레이션과 이론식을 비교한 결과 비 탈선 충돌조건에서 최대 편차율은 0.8 [%] ~ 4.7 [%] 발생하고, 탈선 충돌조건에서는 탈선이 일어나는 시점에서 차량의 횡 변위를 비교한 결과 최대 편차율이 0.6 [%] ~ 5.1 [%]로 잘 일치하는 것을 확인하였다. 이론식을 사용하여 사고나 현상을 시뮬레이션으로 재현할 때 필요한, 전체적인 거동에 부합하는 차량 간 연결의 초기 off-set량을 예측할 수 있다.

Keywords

References

  1. Ronald, M., Robert, R. and Lisa, T., 1999, "Investigation and Simulation of Lateral Buckling in Trains," ASME Joint Railroad Conference.
  2. Tyrell, D. C., 2002, "Rail Passenger Equipment Accidents and the Evaluation of Crashworthiness Strategies," Journal of Rail and Rapid Transit, Vol. 216, No. 2, pp. 131-147. https://doi.org/10.1243/09544090260082371
  3. Han, H. S. and Koo, J. S., 2002, "Simulation of Train Crashes in Three Dimensions," Korean Society for Railway, Vol. 5, No. 3, pp. 116-124.
  4. Kim, G. Y., Cho, H. J. and Koo, J. S., 2008, "A Study on Conceptual Design for Crashworthiness of the Next Generation High-speed EMU," Korean Society for Railway, Vol. 11, No. 3, pp. 300-310.
  5. Son, S. W., Jung, H. S., Kim, J. S. and Kwon, T. S., 2010, "The Basic Study on the Lightweight Design of Square Tube Type Energy Absorber for Train," The Korean Society of Automotive Engineers Annual Conference, pp. 3243-3247.
  6. Ha, H. K., Jeong, J. H., Lee, J. W. and Park, G. S., 2013, "Strength Evaluation of Obstacle Deflection According to EN15227 and Railroad Safety Act standard," The Korean Society for Railway Autumn Conference, pp. 525-531.
  7. Kiusalaas, J., 2007, "Numerical Methods in Engineering With MATLAB," ajin, pp. 302-314.
  8. Yu, D. S. and Kim, Y. I., 2001, "Numerical Analysis," kyowoo, pp. 315-346.
  9. LSTC, LS-DYNA Keyword User's Manual Version 971
  10. https://www.oleo.co.uk
  11. Cho, H. J., 2010, "Study on Wheel-rail Models for Prediction of Derailment Behavior After Collision Using Virtual Testing Model," Seoul National University of Science and Technology.