참고문헌
- ASTM D422 (2007), "Standard test method for particle-size analysis of soils", The American Society for Testing and Materials, West Conshohocken, United States.
- ASTM D854 (2009), "Standard test methods for specific gravity of soil solids by water pycnometer", The American Society for Testing and Materials, West Conshohocken, United States.
- ASTM D4318 (2005), "Standard test methods for liquid limit, plastic limit, and plasticity index of soils", The American Society for Testing and Materials, West Conshohocken, United States.
- ASTM D4253 (2006), "Standard test methods for maximum index density and unit weight of soils using a vibratory table", The American Society for Testing and Materials, West Conshohocken, United States.
- ASTM D4254 (2006), "Standard test methods for minimum index density and unit weight of soils and calculation of relative density", The American Society for Testing and Materials, West Conshohocken, United States.
- Alderman, N. J., Meeten, G. H. and Sherwood, J. D. (1991), "Vane rheometry of bentonite gels", Journal of Non-Newtonian Fluid Mechanics, No. 39(3), pp. 291-310. https://doi.org/10.1016/0377-0257(91)80019-G
- Alfani, R. and Guerrini, G. L. (2005), "Rheological test methods for the characterization of extrudable cement-based materials-a review", Materials and Structures, No. 38(2), pp. 239-247. https://doi.org/10.1007/BF02479349
- Coussot, P., Nguyen, Q. D., Huynh, H. T. and Bonn, D. (2002), "Viscosity bifurcation in thixotropic, yielding fluids", Journal of Rheology (1978-present), No. 46(3), pp. 573-589. https://doi.org/10.1122/1.1459447
- Head, K. H. (2011), Manual of Soil Laboratory Testing: Volume Two: Permeability, Shear Strength and Compressibility Tests, John Wiley and Sons, New York-Toronto, pp. 440.
- Hendriks, F. (2009), "Rheological parameters and numerical analysis of cohesive soils for the Maokong landslide", Master Degree Dissertation, National Taiwan University of Science and Technology, pp. 129.
- Jeong, S. W. (2013), "Debris flow Mobility: A comparison of weathered soils and clay-rich soils", Journal of the Korean Geotechnical Society, No. 29(1), pp. 23-27. https://doi.org/10.7843/kgs.2013.29.1.23
- Jeong, S. W. and Song, Y. S. (2013), "Ring-shear apparatus for estimating the mobility of debris flow and its application", Journal of the Korean Society of Civil Engineers, No. 33(1), pp. 181-194. https://doi.org/10.12652/Ksce.2013.33.1.181
- Jeong, S. W. (2014), "Rheological characteristics and debris flow simulation of waste materials", Journal of the Korean Society of Civil Engineers, No. 34(4), pp. 1227-1240. https://doi.org/10.12652/Ksce.2014.34.4.1227
- Jeong, S. W., Ji, S. W. and Yim, G. J. (2014), "Shear-rate dependent ring-shear characteristics of the waste materials of the Imgi mine in Busan", Journal of the Korean Geotechnical Society, No. 30(7), pp. 5-15. https://doi.org/10.7843/KGS.2014.30.7.5
- Kang, H. S. and Kim, Y. T. (2013), "Yield stress and viscosity characteristics of soils with liquidity index", Journal of Korean Society of Hazard Mitigation, No. 13(1), pp. 169-175. https://doi.org/10.9798/KOSHAM.2013.13.1.169
- Lee, G. C. (2007), "Study on theological properties of suspension by shear box test", Journal of the Architectural Institute of Korea, No. 23(8), pp. 149-156
- Lee, J. S., Song, C. G., Kim, H. T. and Lee, S. O. (2015), "Risk analysis considering the topography characteristics of debris flow occurrence area", Journal of Korean Society of Hazard Mitigation, No. 15(3), pp. 75-82. https://doi.org/10.9798/KOSHAM.2015.15.3.75
- Lee, S. H. H. and Widjaja, B. (2013), Phase concept for mudflow based on the influence of viscosity, Soils and Foundations, No. 53(1), pp. 77-90. https://doi.org/10.1016/j.sandf.2012.12.005
- Liu, S. H., Sun, D. A. and Matsuoka, H. (2005), "On the interface friction in direct shear test", Computers and Geotechnics, No. 32(5), pp. 317-325. https://doi.org/10.1016/j.compgeo.2005.05.002
- Mahajan, S. P. and Budhu, M. (2006), "Viscous effects on penetrating shafts in clays", Acta Geotechnica, No. 1(3), pp. 157-165. https://doi.org/10.1007/s11440-006-0014-8
- Mahajan, S. P. and Budhu, M. (2008), "Shear viscosity of clays to compute viscous resistance", In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India.
- Mesri, G. and Cepeda-Diaz, A. F. (1986), "Residual shear strength of clays and shales", Geotechnique, No. 36(2), pp. 269-274. https://doi.org/10.1680/geot.1986.36.2.269
- Nguyen, Q. D. and Boger, D. V. (1992), "Measuring the flow properties of yield stress fluids", Annual Review of Fluid Mechanics, No. 24(1), pp. 47-88. https://doi.org/10.1146/annurev.fl.24.010192.000403
- Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J. and Coussot, P. (2013), "On the existence of a simple yield stress fluid behavior", Journal of Non-Newtonian Fluid Mechanics, No. 193, pp. 68-79. https://doi.org/10.1016/j.jnnfm.2012.06.009
- Park, S. S., Jeong, S. W., Yoon, J. H. and Chae, B. G. (2013), "Ring shear characteristics of two different soils", Journal of the Korean Geotechnical Society, No. 29(5), pp. 39-52. https://doi.org/10.7843/kgs.2013.29.5.39
- Sassa, K., Fukuoka, H., Wang, G. and Ishikawa, N. (2004), "Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics", Landslides, No. 1(1), pp. 7-19. https://doi.org/10.1007/s10346-003-0004-y
- Schneider, H. H. (1978), "The laboratory direct shear test-an analysis and geotechnical evaluation", Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Geologie de l'Ingenieur, No. 18(1), pp. 121-126.
- Seo, B. H. and Kim, N. W. (1989), "Analysis of Temporal Variations for Determining the Local Design Storms", Korea Institue of Construction Technology, pp. 394.
- Shin, H. (2014), "FEM numerical formulation for debris flow", Journal of the Korean Geotechnical Society, No. 30(10), pp. 55-65. https://doi.org/10.7843/KGS.2014.30.10.55
- Shin, H. (2015), "Evaluation of debris properties using numerical analysis for USGS debris flume tests", Journal of Korean Society of Hazard Mitigation, No. 15(3), pp. 215-221. https://doi.org/10.9798/KOSHAM.2015.15.3.215
- Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique, No. 47(4), pp. 769-790. https://doi.org/10.1680/geot.1997.47.4.769
- Stark, T. D. and Eid, H. T. (1994), "Drained residual strength of cohesive soils", Journal of Geotechnical Engineering, No. 120(5), pp. 856-871. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(856)
- Stark, T. D. (1995), "Measurement of drained residual strength of overconsolidated clays", Transportation Research Record, No. 1479, pp. 26-34.
- Stark, T. D. and Hussain, M. (2010), "Drained residual strength for landslides", GeoFlorida, pp. 3217-3226.
- Tiwari, B. and Marui, H. (2004), "Objective oriented multistage ring shear test for shear strength of landslide soil", Journal of Geotechnical and Geoenvironmental Engineering, No. 130(2), pp. 217-222. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(217)
- Vallejo, L. E. and Scovazzo, V. A. (2003), "Determination of the shear strength parameters associated with mudflows", The Japanese Geotechnical Society, No. 43(2), pp. 129-133.