DOI QR코드

DOI QR Code

직접전단실험을 이용한 세립토의 전단강도 및 유변학적 정수 산정

Estimation of Shear Strength and Rheological Parameters of Fine-Grained Soil Using Direct Shear Test

  • Park, Geun-Woo (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 투고 : 2016.10.19
  • 심사 : 2017.01.18
  • 발행 : 2017.02.01

초록

집중호우로 인하여 산악지반에 발생하는 토석류의 거동은 대상지반 세립분의 전단강도 및 유변학적 특성들에 의하여 영향을 받기 때문에, 두 특성에 대한 정수는 토석류 거동을 파악하는데 매우 중요한 요소이다. 본 연구에서는 직접전단 실험을 통하여 세립분의 전단강도 및 유변학적 정수를 평가하고자 하였다. 건조상태와 액성한계상태로 조성된 두 가지 세립분 시료에 대하여 직접 전단실험을 수행하였으며, 연직응력에 따른 전단강도를 측정하여 점착력과 내부마찰각을 산정하였다. 또한 액성한계로 조성된 시료의 잔류전단강도를 획득하기 위하여 전단변형률속도와 전단방향을 변화시켜 반복전단실험을 수행하였다. 실험 결과, 액성한계상태의 시료는 건조 상태 시료에 비해 내부마찰각은 작지만 점착력은 더 큰 것으로 나타났으며, 잔류전단강도를 통해 산정한 내부마찰각과 점착력은 첨두전단강도에 의해 산정된 결과보다 작은 것으로 나타났다. 반복전단 결과, 전단변형률속도와 잔류전단강도는 선형적인 관계를 보였으며, 전단변형률속도-잔류전단강도 관계의 기울기로써 결정되는 점성은 약 $73.60Pa{\cdot}s$로 산정되었다. 본 연구는 직접전단 장비가 산악지반 토석류 거동과 관련된 세립분의 전단강도 및 유변학적 정수 산정에 효과적으로 활용될 수 있음을 보여준다.

As the behavior of the debris flow due to the torrential rains in mountain is affected by shear strength and rheological properties of the fine fraction in the ground, the evaluation of both properties is necessary to estimate the behavior of the debris flow. The objective of this study is to evaluate the shear strength and rheological properties using the direct shear apparatus. The direct shear tests are conducted for two kinds of fine-grained soil specimens, which are in dry state and liquid limit state. From the direct shear tests, shear strengths are measured according to the normal stresses applied on the specimens to evaluate the cohesion and internal friction angle. In addition, reversal shear tests are performed for the fine-grained soil specimens in liquid limit state according to the shear rate to evaluate the residual shear strength. The results of direct shear tests show that the specimen at the liquid limit state has lower internal friction angle and higher cohesion compared to the dry stated, and the residual friction angle and cohesion at the residual state are lower than those at the peak state. In the result of reversal shear test, the residual shear strength is directly proportional to the shear rate and viscosity is calculated as $73.60Pa{\cdot}s$. This study demonstrates that the direct shear apparatus can be effectively used for the evaluation of the shear strength and rheological properties of the fine-grained soils related with the debris flow.

키워드

참고문헌

  1. ASTM D422 (2007), "Standard test method for particle-size analysis of soils", The American Society for Testing and Materials, West Conshohocken, United States.
  2. ASTM D854 (2009), "Standard test methods for specific gravity of soil solids by water pycnometer", The American Society for Testing and Materials, West Conshohocken, United States.
  3. ASTM D4318 (2005), "Standard test methods for liquid limit, plastic limit, and plasticity index of soils", The American Society for Testing and Materials, West Conshohocken, United States.
  4. ASTM D4253 (2006), "Standard test methods for maximum index density and unit weight of soils using a vibratory table", The American Society for Testing and Materials, West Conshohocken, United States.
  5. ASTM D4254 (2006), "Standard test methods for minimum index density and unit weight of soils and calculation of relative density", The American Society for Testing and Materials, West Conshohocken, United States.
  6. Alderman, N. J., Meeten, G. H. and Sherwood, J. D. (1991), "Vane rheometry of bentonite gels", Journal of Non-Newtonian Fluid Mechanics, No. 39(3), pp. 291-310. https://doi.org/10.1016/0377-0257(91)80019-G
  7. Alfani, R. and Guerrini, G. L. (2005), "Rheological test methods for the characterization of extrudable cement-based materials-a review", Materials and Structures, No. 38(2), pp. 239-247. https://doi.org/10.1007/BF02479349
  8. Coussot, P., Nguyen, Q. D., Huynh, H. T. and Bonn, D. (2002), "Viscosity bifurcation in thixotropic, yielding fluids", Journal of Rheology (1978-present), No. 46(3), pp. 573-589. https://doi.org/10.1122/1.1459447
  9. Head, K. H. (2011), Manual of Soil Laboratory Testing: Volume Two: Permeability, Shear Strength and Compressibility Tests, John Wiley and Sons, New York-Toronto, pp. 440.
  10. Hendriks, F. (2009), "Rheological parameters and numerical analysis of cohesive soils for the Maokong landslide", Master Degree Dissertation, National Taiwan University of Science and Technology, pp. 129.
  11. Jeong, S. W. (2013), "Debris flow Mobility: A comparison of weathered soils and clay-rich soils", Journal of the Korean Geotechnical Society, No. 29(1), pp. 23-27. https://doi.org/10.7843/kgs.2013.29.1.23
  12. Jeong, S. W. and Song, Y. S. (2013), "Ring-shear apparatus for estimating the mobility of debris flow and its application", Journal of the Korean Society of Civil Engineers, No. 33(1), pp. 181-194. https://doi.org/10.12652/Ksce.2013.33.1.181
  13. Jeong, S. W. (2014), "Rheological characteristics and debris flow simulation of waste materials", Journal of the Korean Society of Civil Engineers, No. 34(4), pp. 1227-1240. https://doi.org/10.12652/Ksce.2014.34.4.1227
  14. Jeong, S. W., Ji, S. W. and Yim, G. J. (2014), "Shear-rate dependent ring-shear characteristics of the waste materials of the Imgi mine in Busan", Journal of the Korean Geotechnical Society, No. 30(7), pp. 5-15. https://doi.org/10.7843/KGS.2014.30.7.5
  15. Kang, H. S. and Kim, Y. T. (2013), "Yield stress and viscosity characteristics of soils with liquidity index", Journal of Korean Society of Hazard Mitigation, No. 13(1), pp. 169-175. https://doi.org/10.9798/KOSHAM.2013.13.1.169
  16. Lee, G. C. (2007), "Study on theological properties of suspension by shear box test", Journal of the Architectural Institute of Korea, No. 23(8), pp. 149-156
  17. Lee, J. S., Song, C. G., Kim, H. T. and Lee, S. O. (2015), "Risk analysis considering the topography characteristics of debris flow occurrence area", Journal of Korean Society of Hazard Mitigation, No. 15(3), pp. 75-82. https://doi.org/10.9798/KOSHAM.2015.15.3.75
  18. Lee, S. H. H. and Widjaja, B. (2013), Phase concept for mudflow based on the influence of viscosity, Soils and Foundations, No. 53(1), pp. 77-90. https://doi.org/10.1016/j.sandf.2012.12.005
  19. Liu, S. H., Sun, D. A. and Matsuoka, H. (2005), "On the interface friction in direct shear test", Computers and Geotechnics, No. 32(5), pp. 317-325. https://doi.org/10.1016/j.compgeo.2005.05.002
  20. Mahajan, S. P. and Budhu, M. (2006), "Viscous effects on penetrating shafts in clays", Acta Geotechnica, No. 1(3), pp. 157-165. https://doi.org/10.1007/s11440-006-0014-8
  21. Mahajan, S. P. and Budhu, M. (2008), "Shear viscosity of clays to compute viscous resistance", In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India.
  22. Mesri, G. and Cepeda-Diaz, A. F. (1986), "Residual shear strength of clays and shales", Geotechnique, No. 36(2), pp. 269-274. https://doi.org/10.1680/geot.1986.36.2.269
  23. Nguyen, Q. D. and Boger, D. V. (1992), "Measuring the flow properties of yield stress fluids", Annual Review of Fluid Mechanics, No. 24(1), pp. 47-88. https://doi.org/10.1146/annurev.fl.24.010192.000403
  24. Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J. and Coussot, P. (2013), "On the existence of a simple yield stress fluid behavior", Journal of Non-Newtonian Fluid Mechanics, No. 193, pp. 68-79. https://doi.org/10.1016/j.jnnfm.2012.06.009
  25. Park, S. S., Jeong, S. W., Yoon, J. H. and Chae, B. G. (2013), "Ring shear characteristics of two different soils", Journal of the Korean Geotechnical Society, No. 29(5), pp. 39-52. https://doi.org/10.7843/kgs.2013.29.5.39
  26. Sassa, K., Fukuoka, H., Wang, G. and Ishikawa, N. (2004), "Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics", Landslides, No. 1(1), pp. 7-19. https://doi.org/10.1007/s10346-003-0004-y
  27. Schneider, H. H. (1978), "The laboratory direct shear test-an analysis and geotechnical evaluation", Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Geologie de l'Ingenieur, No. 18(1), pp. 121-126.
  28. Seo, B. H. and Kim, N. W. (1989), "Analysis of Temporal Variations for Determining the Local Design Storms", Korea Institue of Construction Technology, pp. 394.
  29. Shin, H. (2014), "FEM numerical formulation for debris flow", Journal of the Korean Geotechnical Society, No. 30(10), pp. 55-65. https://doi.org/10.7843/KGS.2014.30.10.55
  30. Shin, H. (2015), "Evaluation of debris properties using numerical analysis for USGS debris flume tests", Journal of Korean Society of Hazard Mitigation, No. 15(3), pp. 215-221. https://doi.org/10.9798/KOSHAM.2015.15.3.215
  31. Shibuya, S., Mitachi, T. and Tamate, S. (1997), "Interpretation of direct shear box testing of sands as quasi-simple shear", Geotechnique, No. 47(4), pp. 769-790. https://doi.org/10.1680/geot.1997.47.4.769
  32. Stark, T. D. and Eid, H. T. (1994), "Drained residual strength of cohesive soils", Journal of Geotechnical Engineering, No. 120(5), pp. 856-871. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(856)
  33. Stark, T. D. (1995), "Measurement of drained residual strength of overconsolidated clays", Transportation Research Record, No. 1479, pp. 26-34.
  34. Stark, T. D. and Hussain, M. (2010), "Drained residual strength for landslides", GeoFlorida, pp. 3217-3226.
  35. Tiwari, B. and Marui, H. (2004), "Objective oriented multistage ring shear test for shear strength of landslide soil", Journal of Geotechnical and Geoenvironmental Engineering, No. 130(2), pp. 217-222. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(217)
  36. Vallejo, L. E. and Scovazzo, V. A. (2003), "Determination of the shear strength parameters associated with mudflows", The Japanese Geotechnical Society, No. 43(2), pp. 129-133.