DOI QR코드

DOI QR Code

Misconceptions and Truths of Morphological Characteristics in Plant Stomata

식물에서 기공 형태에 대한 오해와 진실

  • Kim, Dae Jae (Department of Biology Education, Chungbuk National University) ;
  • Lee, Joon Sang (Department of Biology Education, Chungbuk National University)
  • 김대재 (충북대학교 생물교육과) ;
  • 이준상 (충북대학교 생물교육과)
  • Received : 2017.02.06
  • Accepted : 2017.02.22
  • Published : 2017.02.28

Abstract

The walls of guard cells have many different specialized features. Guard cells are present in leaves of bryophytes, ferns and almost all of the vascular plants. Guard cells show considerable morphological diversities. It is understood that the stomata show two types in terms of morphological characterizations of guard cells. The first type is only found in a few monocots including Poaceae and Cyperaceae. In rice and corn, guard cells have the morphological characteristics of dumbbell shape. The morphological characteristics of dumbbell shape always have subsidiary cells. The other type is found in every dicots and many monocots and they are kidney-shaped guard cells. The plants of kidney-shaped guard cells rarely have subsidiary cells except Commelina communis L. Therefore, it could be concluded that two types of the morphological characteristics of guard cells cannot divide according to monocots or dicots. Every plants in which stomatal characteristic features were all different, most of them belong to kidney-shaped guard cells. However in case of Sedum sarmentosum, guard cells were shown to be long and narrow lips type. In Tradescantia virginiana, the shape of guard cells could be called perfectly to half-moon type. Therefore, it could be concluded that kidney-shaped types are all different in some way, but dumbbell-shaped types are almost constant.

공변세포는 선태류, 양치류 그리고 모든 관다발식물의 잎에서 발견되며, 공변세포벽의 특징은 식물에 따라 매우 다양하고 특수하다. 식물에서 공변세포의 형태적 특징은 단자엽식물과 쌍자엽식물에서 관찰할 수 있는 두 종류로 분류되어 왔다. 일반적으로 단자엽식물은 아령형이고 쌍자엽식물은 콩팥형으로 알고 있다. 그러나 많은 단자엽식물의 공변세포는 콩팥형이다. 벼과에 속하는 옥수수와 벼 그리고 사초과의 공변세포는 아령형이다. 아령형의 공변세포를 보이는 식물은 부세포가 있다. 쌍자엽식물의 공변세포는 대부분 콩팥형이며 부세포가 없는 것이 특징이다. 기공은 공변세포와 부세포로 구성되어 있는 것으로 알고 있으나, 대부분의 쌍자엽식물은 부세포가 없다. 이제까지 단자엽식물은 공변세포 모양이 아령형이며 쌍자엽식물은 콩팥형으로 알고 있으나, 결론적으로 공변세포의 모양은 단자엽식물과 쌍자엽식물에 의해 분류되지 않으며 대부분의 벼과와 사초과를 제외하면 단자엽식물의 공변세포도 콩팥형이다. 돌나물은 공변세포가 가늘고 긴 입술형 그리고 자주달개비의 공변세포는 완벽하게 반달형이다. 따라서 콩팥형의 경우는 식물에 따라 그 모양이 모두 다르다고 할 수 있으며, 아령형의 경우는 그 공변세포의 형태가 비교적 일정하다.

Keywords

References

  1. Al-sady, B., Ni, W., Kircher, S., Schafer, E. and Quail, P. H. 2006. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell 23, 439-446. https://doi.org/10.1016/j.molcel.2006.06.011
  2. El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A. J., Wagemaker, C., Weller, J. L. and Koorneef, M. 2003. The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol. 133, 1504-1516. https://doi.org/10.1104/pp.103.029819
  3. Fatemeh, Z. 2006. Density, size and distribution of stomata in different Monocotyledon. Parkistan J. Biol. Sci. 9, 1650-1659. https://doi.org/10.3923/pjbs.2006.1650.1659
  4. Hetherington, A. M. and Woodward, F. I. 2003. The role of stomata in sensing and driving environmental change. Nature 424, 901-908. https://doi.org/10.1038/nature01843
  5. Kim, D. J. and Lee, J. S. 2007. Current theories for mechanism of stomatal opening. J. Plant Biol. 50, 523-526. https://doi.org/10.1007/BF03030704
  6. Kohl, F. G. 1886. Die Transpiration der Pflanzen und ihre Einwirkung auf die Ausbildung pflanzticher Gewebe. Braunschweig.
  7. Kohl, F. G. 1895. Uber Assimilationsenergie und Spaltoffnungsmechanik. Bot. Zbl. 64, 109-110.
  8. Lee, G. B. 2016. Plant morphology. 410 pp., Life Science Co. Korea.
  9. Lee, J. S. 1992. Influence of the mesophyll on stomatal opening. Ph.D Thesis Aberdeen Univ. U.K.
  10. Lee, J. S. 2010. Stomatal opening mechanism of CAM plants. J. Plant Biol. 53, 19-23. https://doi.org/10.1007/s12374-010-9097-8
  11. Lee, J. S. 2013. Do really close stomata by soil drying ABA produced in the roots and transported in transpiration stream? Am. J. Plant Sci. 4, 169-173. https://doi.org/10.4236/ajps.2013.41022
  12. Lee, J. S. and Bowling, D. J. F. 1992. Effect of the mesophyll on stomatal opening in Commelina communis. J. Exp. Bot. 43, 951-957. https://doi.org/10.1093/jxb/43.7.951
  13. Lee, J. S. and Bowling, D. J. F. 1993. Influence of the mesophyll on the change of electrical potential difference of guard cells induced by red light and $CO_2$ in Commelina communis L. and Tradescantina virginiana L. Kor. J. Bio. 36, 383-389.
  14. Lee, J. S. and Bowling, D. J. F. 1995. Influence of the mesophyll on stomatal opening. Australian J. Plant Physiol. 22, 357-363. https://doi.org/10.1071/PP9950357
  15. Lee, J. S., Kwon, Y. M., Koh, S. C., Kim, J. C., Moon, B. Y., Park, M. C., Park, H. B., Park, I. H., Lee, Y. S., Lee, I. H., Lee, J. B., Lee, C. H., Jun, B. O., Cho, S. H. and Hong, J. B. 2003. New plant physiology. 478 pp., Academy Books. Korea.
  16. Lee, J. S. and Park. C. H. 2016. Morphological characteristics and conceptualization of guard cells in different plants. J. Environ. Sci. Int. 25, 1051-1056. https://doi.org/10.5322/JESI.2016.25.8.1051
  17. Lee, Y. S. 2002. Plant systematics. 575 pp., Usung Co. Korea.
  18. Lu, P., Outlaw, W. H., Smith, B. G. and Freed, G. A. 1997. A new mechanism for the regulation of stomatal aperture size in intact leaves. Plant Physiol. 114, 109-118. https://doi.org/10.1104/pp.114.1.109
  19. Meidner, H. and Mansfield, T. A. 1968. Physiology of stomata. 457 pp., McGgraw Hill Co. U.K.
  20. Outlaw, W. 1996. Stomata, pp. 241-259, In N. R. Baker (ed.), Photosynthesis and the environment. Springer Dordreht, Netherland.
  21. Park, H. D., Park, J. H., Park, S. J. and Jung, B. G. 2006. Plant systematics. 280 pp., World Sci. Korea.
  22. Poffenroth, M., Green, D. B. and Tallman, G. 1992. Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. Plant Physiol. 98, 1460-1471. https://doi.org/10.1104/pp.98.4.1460
  23. Ritte, G., Sakr, S., Rohrig, R. and Raschke, K. 1999. Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. related to the solute requirement for stomatal opening. Plant Physiol. 121, 647-655. https://doi.org/10.1104/pp.121.2.647
  24. Taiz, L. and Zeiger, E. 2010. Plant physiology. 812 pp., Sinauer Associates Inc. Sunderland, United States.
  25. Talboll, L. D., Shimayevich, I. J., Chung, Y., Hammad, J. W. and Zeiger, E. 2003. Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis. Plant Physiol. 133, 1522-1529. https://doi.org/10.1104/pp.103.029587
  26. Talboll, L. D. and Zeiger, E. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329-337. https://doi.org/10.1093/jxb/49.Special_Issue.329
  27. Ting, I. P. 1987. Stomata in plants with crassulacean acid metabolism, pp. 353-366, In: Zeiger, E., Faquhar, G.D., Cowan, I.R. (eds), Stomatal function. Stanford University Press, Stanford, CA.
  28. Wallace, R. A., Sanders, J. P. and Perl, R. J. 1991. The science of life. 1074 pp., HarperCollinis Publiishers Inc. New York.
  29. Zeiger, E., Iino, M. M., Shimazaki, K. and Ogawa, T. 1987. The blue light response of stomata, pp. 209-227, In Zeiger, E., Faquhar, G. D., Cowan, I. R. (eds), Stomatal function, Stanford University Press, Stanford, CA.
  30. Zeiger, E. and Talbott, L. D. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329-337. https://doi.org/10.1093/jxb/49.Special_Issue.329
  31. Zeiger, E., Talbott, L. D., Frechilla, S., Srivastava, A. and Zhu, J. 2002. The guard cell chloroplast: a perspective for the twenty-first century. New Phyto. 153, 415-424. https://doi.org/10.1046/j.0028-646X.2001.NPH328.doc.x