DOI QR코드

DOI QR Code

Characterization of Bacteriocin Produced from Isolated Strain of Bacillus sp.

Bacillus 속 분리주가 생산하는 박테리오신의 특성 조사

  • Ham, Seung-Hee (Department of Bio Health Science, Changwon National University) ;
  • Choi, Nack-Shick (Department of Bio Health Science, Changwon National University) ;
  • Moon, Ja-Young (Department of Bio Health Science, Changwon National University) ;
  • Baek, Sun-Hwa (Department of Bio Health Science, Changwon National University) ;
  • Lee, Song-Min (Department of Bio Health Science, Changwon National University) ;
  • Kang, Dae-Ook (Department of Bio Health Science, Changwon National University)
  • 함승희 (창원대학교 생명보건학부) ;
  • 최낙식 (창원대학교 생명보건학부) ;
  • 문자영 (창원대학교 생명보건학부) ;
  • 백선화 (창원대학교 생명보건학부) ;
  • 이송민 (창원대학교 생명보건학부) ;
  • 강대욱 (창원대학교 생명보건학부)
  • Received : 2016.12.12
  • Accepted : 2017.02.22
  • Published : 2017.02.28

Abstract

As an effort to find a potential biopreservative, we isolated bacterial strains producing bacteriocin from fermented foods. A strain was finally selected and characteristics of the bacteriocin were investigated. The selected strain was identified as Bacillus subtilis E9-1 based on the 16S rRNA gene analysis. The culture supernatant of B. subtilis E9-1 showed antimicrobial activity against Gram-positive bacteria. Subtilisin A, ${\alpha}$-chymotrypsin, trypsin and proteinase K inactivated the antimicrobial activity, which means its proteinaceous nature, a bacteriocin. The bacteriocin activity was fully retained at the pH range from 2.0 to 8.0 and stable at up to $100^{\circ}C$ for 60 min. Solvents such as ethanol, isopropanol and methanol had no effect on the antimicrobial activity at the concentration of 100% but acetone and acetonitrile reduced the activity at up to 100% concentration. Cell growth of four indicator strains was dramatically decreased in dose-dependent manner. Listeria monocytogenes was the most sensitive, but Enterococcus faecium was the most resistant. Bacillus cereus and Staphylococcus aureus showed the medium sensitivity. The bacteriocin showed its antimicrobial activity against B. cereus and L. monocytogenes via bactericidal action. The number of viable cells of L. monocytogenes started to reduce after addition of bacteriocin to the minced beef. The bacteriocin was purified through acetone concentration, gel filtration chromatography and RP-HPLC. The whole purification step led to a 6.82 fold increase in the specific activity and 6% yield of bacteriocin activity. The molecular weight of the purified bacteriocin was determined to be 3.3 kDa by MALDI-TOF/TOF mass spectrometry.

토하젓에서 분리한 박테리오신 생산 균주 중 상대적으로 넓은 항균스펙트럼을 나타내는 1균주를 선발하였고 16S rRNA 유전자 염기서열 분석 결과 B. subtilis E9-1와 거의 일치하는 것으로 동정되었다. B. subtilis E9-1가 생산하는 박테리오신의 물리화학적 특성을 조사하였고, 박테리오신을 정제하였다. 이 박테리오신은 B. cereus KCCM 11204, M. luteus IAM 1056, L. monocytogenes KCCM 40307, E. faecium KCCM 12118 및 S. aureus subsp. aureus KCCM 40050 등에 대해서 항균활성을 나타내었다. pH 2.0~8.0 범위에서는 안정하였으나 8.0 이상에서는 항균활성이 감소하였다. Isopropanol, ethanol 및 methanol 등의 유기용매에서 100%까지, acetone과 acetonitrile에서는 80%까지 항균활성을 유지하였다. 내열성의 경우 $40{\sim}100^{\circ}C$에서 60분까지는 안정하게 항균활성을 보였다. 박테리오신 농도를 증가시키면서 B. cereus, L. monocytogenes, E. faecium 및 S. aureus subsp. aureus 등 시험균 4주의 감수성을 조사한 결과 농도 의존적으로 시험균의 생육이 감소하였고 이중 L. monocytogenes 의 감수성이 가장 높게 나타났다. 박테리오신의 작용양상을 알아본 결과 B. cereus와 L. monocytogenes 배양액에 박테리오신 용액을 첨가한 후 흡광도와 CFU값이 감소하여 bactericidal임을 확인하였다. 식품에 적용 가능성을 알아보기 위해 실험한 결과 3일째부터 박테리오신을 처리하지 않은 대조구에 비해 실험구에서 생균수(CFU/ml)가 감소하였다. 아세톤을 이용한 배양상등액의 농축, superdex peptide HR 10/300 column 이용한 겔여과크로마토그래피, 역상 HPLC로써 박테리오신을 정제하였다. 역상 HPLC를 통해서 정제한 박테리오신의 분자량을 tricine SDS- PAGE로 분석한 결과 약 4 kDa이었고 질량분석법으로 측정한 정확한 분자량은 3347.6 Da로 나타났다.

Keywords

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Anastasiadou, S., Papagianni, M., Filiousis, G., Ambrosiadis, I. and Koidis, P. 2008. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour. Technol. 99, 5384-5390. https://doi.org/10.1016/j.biortech.2007.11.015
  3. Bierbaum, G., Brötz, H., Koller, K. P. and Sagl, H. G. 1995. Cloning, sequencing and production of the lantibiotic mersacidin. FEMS Microbiol. Lett. 127, 121-126. https://doi.org/10.1111/j.1574-6968.1995.tb07460.x
  4. Doopedia. Bacteriocin. http://www.doopedia.co.kr/
  5. Dubois, J. Y. F., Kouwen, T.R.H.M., Schurich, A. K. C., Reis, C. R., Ensing, H. T., Trip, E. N., Zweers, J. C. and van Dijl, J. M. 2009. Immunity to the bacteriocin sublancin 168 is determined by the sun I(YolF) protein of Bacillus subtilis. Antimicrob. Agents Chemother. 53, 651-661. https://doi.org/10.1128/AAC.01189-08
  6. Hammami, I., Rhouma, A., Jaouadi, B., Rebai, A. and Nesme, X. 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 48, 253-260. https://doi.org/10.1111/j.1472-765X.2008.02524.x
  7. Huang, T., Geng, H., Miyyapuram, V.R., Sit, C. S., Vederas, J. C. and Nakano, M. M. 2009. Isolation of variant of subtilosin A with hemolytic activity. J. Bacteriol. 191, 5690-5696. https://doi.org/10.1128/JB.00541-09
  8. Jeong, S. Y., Park, C. S., Choi, N. S., Yang, H. J., Kim, C. Y., Yoon, B. D., Kang, D. O., Ryu, Y. W. and Kim, M. S. 2011. Characteristics of bacteriocin produced by Lactococcus lactis ET45 isolated from Kimchi. Kor. J. Microbiol. Biotechnol. 47, 74-80.
  9. Jung, S. Y., Choi, J. I., Joo, W. H., Suh, H. H., Na, A. S., Cho, Y. K., Moon, J. Y., Ha, K. C., Paik, D. H. and Kang, D. O. 2009. Characterization and purification of the bacteriocin produced by Bacillus licheniformis isolated from soybean sauce. J. Life Sci. 19, 994-1002. https://doi.org/10.5352/JLS.2009.19.7.994
  10. Kawulka, K. E., Sprules, T., Diaper, C. M., Whittal, R. M., McKay, R. T., Mercier, P., Zuber, P. and Vederas, J. C. 2004. Structure of subtilosin A, a cyclic antimicrobial peptides from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alphaamino acid derivatives. Biochemistry 43, 3385-3395. https://doi.org/10.1021/bi0359527
  11. Kim, H. J., Lee, N. K., Cho, S. M., Kim, K. T. and Paik, H. D. 1999. Inhibition of spoilage and pathogenic bacteria by Lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 from fermented fish food. Kor. J. Food Sci. Technol. 31, 1035-1043.
  12. Kojic, M., Strahinic, I. and Topisirovic, L. 2005. Proteinase PI and lactococcin A genes are located on the largest plasmid in Lactococcus lactis subsp. lactis bv. diacetylactis S50. Can. J. Microbiol. 51, 305-314. https://doi.org/10.1139/w05-009
  13. Lee, J. Y., Choi, N. S., Chun, S. S., Moon, J. Y. and Kang, D. O. 2015. Purification and characterization of the bacteriocin produced by Lactococcus sp. KD 28 isolated from Kimchi. J. Life Sci. 25, 180-188. https://doi.org/10.5352/JLS.2015.25.2.180
  14. Liu, G., Wang, Y., Gui, M., Zheng, H., Dai, R. and Li, P. 2012. Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham. Food Control 24, 64-71. https://doi.org/10.1016/j.foodcont.2011.09.004
  15. Mattick, A. T. and Hirsch, A. 1947. Further observations on an inhibitory substance (Nisin) from Lactic Streptococci. Lancet. 2, 5-8.
  16. Muriana, P. M. and Klaenhammer, T. R. 1991. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. Microbiol. 57, 114-121.
  17. Schagger, H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1, 16-22. https://doi.org/10.1038/nprot.2006.4
  18. Schagger, H. and Von Jagow, G. 1987. Tricine-sodium dodecyl polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  19. Schved, F., Lalazar, A., Henis, Y. and Juven, B. J. 1993. Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 74, 67-77. https://doi.org/10.1111/j.1365-2672.1993.tb02998.x
  20. Stalin, V., Perumal, K., Abraham, L., Stanley and Kalaichel van, P. T. 2010. Screening and production of subtilin from Bacillus subtilis isolated from nutrient-rich organic and biodynamic manures. J. Life Sci. 4, 34.
  21. Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J. and Entian, K. D. 2002. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J. Bacteriol. 184, 1703-1711. https://doi.org/10.1128/JB.184.6.1703-1711.2002
  22. Todorov, S. D., Rachman, C., Fourrier, A., Dicks, L. M., van Reenen, C. A., Prevost, H. and Dousset, X. 2011. Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe 17, 23-31. https://doi.org/10.1016/j.anaerobe.2010.01.004
  23. Wannun, P., Piwat, S. and Teanpaisan, R. 2014. Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1. Anaerobe 27, 17-21. https://doi.org/10.1016/j.anaerobe.2014.03.001
  24. Xie, J., Zhang, R., Shang, C. and Guo, Y. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8, 5611-5619.
  25. Yang, E. J. and Chang, H. C. 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechnol. 35, 339-346.