DOI QR코드

DOI QR Code

염생식물 가는갯는쟁이 용매 추출물의 항염증활성

Antiinflammatory Activity of Solvent-partitioned Fractions from Atriplex gmelinii C. A. Mey. in LPS-stimulated RAW264.7 Macrophages

  • 정희정 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 김호준 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 주은신 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 이슬기 (신라대학교 의생명과학대학 식품영양학과) ;
  • 공창숙 (신라대학교 의생명과학대학 식품영양학과) ;
  • 서영완 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)
  • Jeong, Heejeong (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • Kim, Hojun (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Ju, Eunsin (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Lee, Seul-Gi (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Kong, Chang-Suk (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Seo, Youngwan (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University)
  • 투고 : 2016.09.27
  • 심사 : 2016.11.02
  • 발행 : 2017.02.28

초록

본 연구에서는 염생식물을 이용한 생리활성 소재 개발 연구의 일환으로 가는갯능쟁이의 용매 추출물 및 분획물을 제조하여 LPS로 염증을 유도한 마우스 유래 macrophages에서의 NO 생성 및 염증관련인자의 발현에 미치는 영향을 검토하여 가는갯능쟁이의 항염증 소재로서의 이용 가능성을 검토하였다. 가는갯능쟁이는 methylene chloride와 methanol을 이용하여 제조한 조추출물(crude extract, 48.3 mg)을 용매극성에 따라 단계적으로 분획하여 n-hexane 층(11.5 mg), 85% aqueous methanol 수용액층(85% aq. MeOH, 11.3 mg), n-butanol 층(n-BuOH, 11.2 mg)과 water 층(12.3 mg)을 얻었다. 가는갯능쟁이의 조추출물 및 분획물의 RAW264.7 대식세포에 대한 독성 여부를 측정하여 세포에 대한 독성이 나타나지 않는 처리 농도에서 추출물 및 분획물의 항염증 활성을 확인하였다. 조추출물은 LPS로 유도된 NO 생성을 유의적으로 억제하는 효과를 나타내었으며, 주요 염증 유발인자인 iNOS와 COX-2의 발현 또한 효과적으로 억제하였다. 분획물의 NO 생성 억제효과는 85% aq. MeOH> n-BuOH >n-hexane > $H_2O$의 순으로 나타났으며, 세포내 전사수준에서 염증관련 유전자의 발현 억제율은 $H_2O$ 분획 처리군에 비해 85% aq. MeOH, n-BuOH 및 n-hexane 분획 처리군에서 높게 나타났다. 이상의 결과로부터 항염증 활성이 가장 높게 나타난 85% aq. MeOH 분획층으로 부터 염증억제 효과가 있는 유효 성분의 분리가 기대된다.

As a part of ongoing research to elucidate and characterize antiinflammatory nutraceuticals, the crude extracts from Atriplex gmelinii C. A. Mey. and their solvent-partitioned fractions were tested for their antiinflammatory potential in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. The crude extracts of A. gmelinii C. A. Mey. were fractioned according to polarity with n-hexane, 85% aqueous methanol (85% aq. MeOH), n-butanol, and $H_2O$. Their antiinflammatory activities were investigated in LPS-induced inflammation in mouse macrophages by measuring nitric oxide (NO) generation and mRNA expression of inflammation mediators, namely, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6. As a result, we confirmed that the crude extracts of A. gmelinii C. A. Mey. inhibited LPS-stimulated NO production and mRNA expression of iNOS and COX-2 as important inflammatory factors. The inhibition of NO production through the downregulation of important inflammatory factors such as iNOS, COX-2, $IL-1{\beta}$, and IL-6 was found by treatment with all solvent-partitioned fractions. Among all tested fractions, 85% aq. MeOH showed the strongest antiinflammatory response. Based on the current results, A. gmelinii C. A. Mey. was suggested to possess natural antiinflammatory components, indicating that it could be used as a valuable source of antiinflammatory substances.

키워드

참고문헌

  1. Hamed, K. B., Castagna, A., Salem, E., Ranieri, A. and Abdelly, C. 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul. 53, 185-194. https://doi.org/10.1007/s10725-007-9217-8
  2. Han, M. H., Lee, M. H., Hong, S. H., Choi, Y. H., Moon, J. S., Song, M. K., Kim, M. J., Shin, S. J. and Hwang, H. J. 2014. Comparison of anti-inflammatory activities among ethanol extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus, and their mixtures in RAW 264.7 murine macrophages. J. Life Sci. 24, 329-335. https://doi.org/10.5352/JLS.2014.24.3.329
  3. Hyun, J. O. and Na, H. R. Species Korea, 2011.12.16.
  4. Jeong, D. H., Kim, K. B. W. R., Kang, B. K., Jung, S. A., Kim, H. Y., Jeong, H. Y., Bark, S. W. and Ahn, D. H. 2012. Anti-inflammatory activity of the water extract of Sargassum fulvellum. Biotechnol. Bioprocess. Eng. 27, 325-329.
  5. Jin, K. S., Lee, J. Y., Kwon, H. J. and Kim, B. W. 2014. Antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract. J. Life Sci. 24, 713-720. https://doi.org/10.5352/JLS.2014.24.7.713
  6. Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. P. and Parida, A. K. 2006. Antioxidative response mechanisms in halophytes: their role in stress defence. J. Genet. 85, 237-254. https://doi.org/10.1007/BF02935340
  7. Kang, B. H. 2014. Superintendence of Korean Resource Plant. Richvanilla Seoul 12-16.
  8. Kim, M. H., Han, M. S., Kang, K. K., Na, Y. E. and Bang, H. S. 2011. Effects of climate change on C4 plant list and distribution in South Korea: A Review. Kor. J. Agric. For. Meteorol. 13, 123-139. https://doi.org/10.5532/KJAFM.2011.13.3.123
  9. Kim, Y. J. and Son, D. Y. 2014. Inflammatory mediator regulation of the Zizyphus jujube leaf fractions in the LPS-stimulated Raw264.7 mouse macrophage. Kor. J. Food Preserv. 21, 114-120. https://doi.org/10.11002/kjfp.2014.21.1.114
  10. Kim, Y. S., Lee, S. J., Hwang, J. W. Kim, E. H., Park, P. J. and Jeong, J. H. 2012. Anti-inflammatory effects of extracts from Ligustrum ovalifolium H. leaves on RAW 264.7 macrophages. J. Kor. Soc. Food Sci. Nutr. 41, 1205-1210. https://doi.org/10.3746/jkfn.2012.41.9.1205
  11. Kong, C. S, Kim, Y. A., Kim, M. M., Park, J. S., Kim, J. A., Kim, S. K., Lee, B. J., Nam, T. J. and Seo, Y. 2008. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. In Vitro 22, 1742-1748. https://doi.org/10.1016/j.tiv.2008.07.013
  12. Kong, C. S. 2014. Anti-inflammatory activity of the solvent-partitioned fractions from Spergularia marina in LPSstimulated RAW 264.7 cells. Prev. Nutr. Food Sci. 19, 261-267. https://doi.org/10.3746/pnf.2014.19.4.261
  13. Kong, C. S., Lee, J. I., Kwon, M. S. and Seo, Y. 2015. Inhibitory effect of crude extracts from brown alga Sargassum siliquanstrum on 3T3-L1 adipocyte differentiation. Ocean Polar Res. 37, 279-285. https://doi.org/10.4217/OPR.2015.37.4.279
  14. Ksouri, R., Falleh, H., Megdiche, W., Trabelsi, N., Mhamdi, B., Chaieb, K., Bakrouf, A., Magne, C. and Abdelly, C. 2009. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 47, 2083-2209. https://doi.org/10.1016/j.fct.2009.05.040
  15. Ksouri, R., Megdiche, W., Falleh, H., Trabelsi, N., Boulaaba, M., Smaoui, A. and Abdelly, C. 2008. Influence of biological, environmental and technical factorson phenolic content and antioxidant activities of Tunisian halophytes. Comp. Ren. Biol. 331, 865-873. https://doi.org/10.1016/j.crvi.2008.07.024
  16. Kwon, M. S., Mun, O. J., Bae, M. J., Lee, S. G., Kim, M., Lee, S. H., Yu, K. H., Kim, Y. Y. and Kong, C. S. 2015. Anti-inflammatory activity of ethanol extracts from Hizikia fusiformis fermented with Lactic acid bacteria in LPS-stimulated RAW264.7 Macrophages. J. Kor. Soc. Food Sci. Nutr. 44, 1450-1457. https://doi.org/10.3746/jkfn.2015.44.10.1450
  17. Mun, O. J., Kwon, M. S., Bae, M. J., Ahn, B. N., Fatih, K., Kim, M. H., Lee, S. H., Yu, K. H., Kim, Y. Y., Seo, Y. W. and Kong, C. S. 2015. Anti-inflammatory activity of Hizikia fusiformis extracts fermented with Lactobacillus casei in LPSstimulated RAW 264.7 macrophages. Kor. Soc. Biotechnol. Bioeng. J. 30, 38-43.
  18. No, H., Kim, H., Kim, J. A., Karadeniz, F., Ahn, B. N., Seo, Y., Nam, K. H. and Kong, C. S. 2015. Anti-inflammatory effect of byproducts from Haliotis discus hannai in Raw 264.7 cells. J. Chemistry 2015, Article ID 526439, 7 pages.
  19. Noh, K. H., Jang, J. H., Min, K. H., Chinzorig, R., Lee, M. O. and Song, Y. S. 2011. Suppressive effect of green tea seed coat ethyl acetate faction on inflammation and its mechanism in RAW264.7 macrophage cell. J. Kor. Soc. Food Sci. Nutr. 40, 625-634. https://doi.org/10.3746/jkfn.2011.40.5.625
  20. Son, H. J., Kim, H. J., Chae, J. H., Kwon, H. T., Yeo, H. S., Eo, S. J., Leem, Y. H., Kim, H. J. and Kim, C. K. 2012. Effects of arabinoxylan rice bran and exercise training on immune function and inflammation response in lipopolysaccharide-stimulated Rats. J. Appl. Biol. Chem. 55, 41-46. https://doi.org/10.3839/jabc.2011.057
  21. Woo, K. J. and Kwon, T. K. 2007. Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int. Immunopharmacol. 7, 1776-1783. https://doi.org/10.1016/j.intimp.2007.09.018
  22. Yoon, H. S., Choi, Y. S. and Lee, E. H. 2013. Biologic response modifiers. J. Kor. Med. Assoc. 56, 135-141. https://doi.org/10.5124/jkma.2013.56.2.135

피인용 문헌

  1. Volatile Compound Analysis and Anti-oxidant and Anti-inflammatory Effects of Oenanthe javanica, Perilla frutescens, and Zanthoxylum piperitum Essential Oils vol.15, pp.3, 2017, https://doi.org/10.20402/ajbc.2016.0142